
Fundamentals of Applied Microcontrollers
Manual

Seth McNeill

Edition Fall 2024 (v0.7)
2024 September 13

Contents

1 Introduction 5
1.1 Introduction . 5
1.2 License . 5

2 Number Systems 6
2.1 Decimal Numbers . 6
2.2 Binary Numbers . 7
2.3 Hexadecimal Numbers . 7
2.4 Binary Background . 8
2.5 Converting Between Bases . 9

2.5.1 Binary to Decimal . 9
2.5.2 Decimal to Binary . 9
2.5.3 Binary and Hexadecimal 10

2.6 Colors . 10
2.7 ASCII . 10
2.8 Adding and Subtracting Binary Numbers 11

2.8.1 Default method . 11
2.8.2 Twos Complement method 11

2.9 Gray Codes . 13
2.10 Binary Background . 14

3 Boolean Logic 15
3.1 Introduction . 15
3.2 Methods of Representing Logic 16
3.3 Boolean Algebra . 17

3.3.1 Theorems of Boolean Algebra 17
3.4 Logic Gates and Truth Tables 18

1

CONTENTS 2

4 Arduino Startup 21
4.1 Introduction . 21
4.2 Datasheets . 21

4.2.1 Arduino Nano Connect RP2040 21
4.2.2 Circuit Board Parts (v0.5) 22

4.3 Schematics and PCB . 23

5 I2C GPIO/Multiplexer 31
5.1 Introduction . 31
5.2 Registers . 31

5.2.1 Registers 0 and 1 - Input Registers 31
5.2.2 Registers 2 and 3 - Output Registers 31
5.2.3 Registers 4 and 5 - Polarity Inversion Registers 32
5.2.4 Registers 6 and 7 - Configuration Registers 32
5.2.5 Pin mapping for Lab Robot 33

6 Buttons and Serial Communications 37
6.1 Introduction . 37
6.2 Buttons . 37
6.3 Serial Communications . 41

6.3.1 Universal Asynchronous Receiver-Transmitter 41
6.3.2 Serial Peripheral Interface 44
6.3.3 Inter-Integrated Circuit 45

6.4 In Case of Upload Lock-up or Failure 47
6.5 Arduino Programming Suggestions 47
6.6 Arduino Button Setup . 47
6.7 Arduino Serial Setup . 49

7 Displays 50
7.1 Introduction . 50

7.1.1 LCD . 50
7.1.2 eInk . 50
7.1.3 OLED . 51

7.2 Pixel Layout . 51
7.3 Using the Display . 51

7.3.1 Using Canvas to Reduce Flicker 53

CONTENTS 3

8 Sampling and Data Collection 55
8.1 Introduction . 55
8.2 Sampling . 55
8.3 ADCs . 57
8.4 Data Collection . 59

8.4.1 Why Do We Collect Data? 59
8.4.2 How Can We Tell If Data is Good? 59
8.4.3 Examples . 59

9 Inertial Measurements 65
9.1 Introduction . 65
9.2 Rectilinear Kinematics . 65
9.3 Angle Measurement . 66

9.3.1 Accelerometer Angles 67
9.3.2 Gyroscope Angles . 68
9.3.3 Fusing Accelerometer and Gyroscope Angles 68

9.4 Useful References . 69

10 Pulse Width Modulation 70
10.1 Introduction . 70
10.2 References . 70

11 DC Motors and Control 71
11.1 Introduction . 71
11.2 Types of DC Motors . 71

11.2.1 Brushed DC . 71
11.2.2 Hobby Servos . 72
11.2.3 Brushless DC Motors 72
11.2.4 Stepper Motors . 73

11.3 References . 73

12 Deriving Information from Data 74
12.1 Introduction . 74
12.2 Collecting Good Data . 74

12.2.1 Ground Truth . 75
12.2.2 Repeatability . 75
12.2.3 Multiple Sensors (sources) 75
12.2.4 Common Sense . 75

CONTENTS 4

12.2.5 Data Collection Review 76
12.3 Sample Timing . 76

12.3.1 Interrupts . 77
12.3.2 Volatile Variables . 77

12.4 Static Variables . 78
12.5 Extrema Detection . 79

12.5.1 Thresholding . 80
12.5.2 Dispersion Method . 81

12.6 Bayes Theorem . 83
12.7 ML Metrics . 86

12.7.1 Confusion Matrix . 86
12.7.2 Accuracy . 86
12.7.3 Precision . 86
12.7.4 Recall . 87
12.7.5 F1 Score . 87
12.7.6 References . 87

13 Control of Systems 89
13.1 Introduction . 89
13.2 PID Control . 89

13.2.1 Proportional Control 90
13.2.2 Integral Control . 90
13.2.3 Differential Control . 90
13.2.4 PI and PD Control . 90

14 WiFI and Bluetooth 91
14.1 Introduction . 91
14.2 Updating WiFiNINA Firmware 91

Chapter 1

Introduction

1.1 Introduction
This book is the accompanying text to a class introducing microcontrollers to
upper division, non-electrical engineering undergraduate students who have
taken some C programming.

The accompanying laboratory manual is located here.

1.2 License
This code is released under a Creative Commons Attribution license. The
full text of the license is available at the following link.

https://creativecommons.org/licenses/by/4.0/
Users of this code should attribute the work to this project by displaying

a notice stating their product contains code and/or text from the Fundamen-
tals of Microcontrollers Project and/or linking to
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Laboratories.

5

https://github.com/semcneil/Fundamentals-of-Microcontrollers-Laboratories
https://creativecommons.org/licenses/by/4.0/

Chapter 2

Number Systems

This chapter introduces the concepts of different numbering systems that are
relevant to microcontrollers.

2.1 Decimal Numbers
The standard number system used by humans is based on 10. This logically
flows the usual numbers of fingers or toes humans have. When counting in
the base 10 (decimal) we start at 0, count up to 9, then run out of numbers
to use. When runs out of numbers, we put a number to the left of the column
we were counting in, and then start over at zero again which gives us the
number 10. A more clear way to count would be to count from 00 to 09,
then increment the left digit and start the right digit back at 0. This can be
continued until 99 is reached. But now we have a model to follow. If a column
gets to 9, we increment a column to the left and start the current column
over at 0. This leads to the number 100. This concept can be continued
forever.

When given a particular number, 3254, in decimal the value is calculated
as

3254 = 3 · 1000 + 2 · 100 + 5 · 10 + 4 (2.1)

It could also be represented as

3254 = 3 · 103 + 2 · 102 + 5 · 101 + 4 · 100 (2.2)

This is the basis for a positional number system.

6

CHAPTER 2. NUMBER SYSTEMS 7

2.2 Binary Numbers
Computers run a base 2 system, also known as binary. This means that we
only have two options at each position, 1 or 0, instead of the 10 available in
the decimal system. However, counting is done in the same way, when you
run out of symbols, increment the position to the left and then start over at
zero in the current position.

Binary numbers are also positional so a number like 1011 is

1011 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 1110 (2.3)

where 1110 indicates that the number 11 is base 10.
The maximum value a binary number can have is determined by the

number of bits it has. The formula is:

Vmax = 2n − 1 (2.4)

where n is the number of bits. For example, an 8 bit number has a maximum
value of 28 − 1 = 255.

2.3 Hexadecimal Numbers
The problem for humans is that we have a very difficult time read-
ing binary numbers. Especially once the numbers get long such as
111011010100101101012. The first thing we can do to improve intelligibil-
ity is to put a space in every 4 digits so that we aren’t completely bowled
over by all the digits. This gives us 1110 1101 0100 1011 01012. This is bet-
ter but still leaves some challenges. Someone pointed out that since 4 bits
can have 16 different values, what if each 4 bits (also called a nibble) was
represented by a single base 16 number. Base 16 is called hexadecimal. It
has the problem that it runs out of digits once we get to 10, so it was decided
to simply start on the alphabet so 1010 is A16, 1110 is B16, and so forth. Now
the cumbersome binary number we’ve been playing with can be represented
as ED4B516.

A comparison of the different numbering system representations of 0
through 1510 are shown in Table 2.1.

CHAPTER 2. NUMBER SYSTEMS 8

Decimal Binary Hexadecimal
00 0000 0
01 0001 1
02 0010 2
03 0011 3
04 0100 4
05 0101 5
06 0110 6
07 0111 7
08 1000 8
09 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Table 2.1: Decimal, binary, and hexadecimal numbers align as shown in this
table.

2.4 Binary Background
The reasons for this stem from early computers using switches (relays) as
their basic computing elements and the fact that telling the difference be-
tween a “high" voltage and a “low" voltage is easier to do than to differentiate
10 different voltages. It also allows for a gap between high and low that cre-
ates some immunity to noise called the noise margin. The figure linked to
labels noise margin at NM which indicates how much (in volts) the signal
coming from the source on the left can be degraded and still be recognized as
a high or low. The other cool thing about digital signals is that each device
the signal passes through removes all noise.

https://3.bp.blogspot.com/-7GOaQqAncoU/VelAErlx5gI/AAAAAAAARLE/kITWaG8LAws/s1600/noise%2Bmargin.png

CHAPTER 2. NUMBER SYSTEMS 9

2.5 Converting Between Bases

2.5.1 Binary to Decimal

Converting to decimal is straightforward since we can simply sum each digit
multiplied by the power of 2 it represents.

V10 =

p∑
i=0

di · 2i (2.5)

In Equation 2.5 the p digits, di, of the binary number are summed from
right to left while being multiplied by the power of 2 they represent. As an
example, convert 1011 0111 to decimal.

V10 = 1 · 20 + 1 · 21 + 1 · 22 + 0 · 23 + 1 · 24 + 1 · 25 + 0 · 26 + 1 · 27

= 1 + 2 + 4 + 0 + 16 + 32 + 0 + 128

= 183

(2.6)

I usually find it easiest to just remember the powers of two for each place
and add them up.

128

1
64

0
32

1
16

1
8

0
4

1
2

1
1

1 = 1 + 2 + 4 + 16 + 32 + 128 (2.7)

2.5.2 Decimal to Binary

Converting decimal numbers to binary involves dividing by 2 until the re-
mainder is 0 or 1. The process goes as follows:

1. Divide the number by 2. If the remainder is 1 then the least significant
bit is 1 otherwise if the remainder is 0 (it was an even number) then
the least significant bit is 0.

2. Take the quotient from the previous step and divide by 2. The remain-
der is the next more significant bit in the binary representation.

3. Repeat Step 2 until the quotient is 0.

As an example, let’s convert 1110 to binary.

11÷ 2 = 5R1 → 1 (LSB)

5÷ 2 = 2R1 → 1

2÷ 2 = 1R0 → 0

1÷ 2 = 0R1 → 1 (MSB)

(2.8)

CHAPTER 2. NUMBER SYSTEMS 10

That means that 1110 is 10112. As another example let us convert 2010 to
binary.

20÷ 2 = 10R0 → 0 (LSB)

10÷ 2 = 5R0 → 0

5÷ 2 = 2R1 → 1

2÷ 2 = 1R0 → 0

1÷ 2 = 0R1 → 1 (MSB)

(2.9)

This shows that 2010 is 101002.

2.5.3 Binary and Hexadecimal

For conversions between binary and hexadecimal I tend to use the table
lookup method. After using it enough times you begin to memorize the
conversions. In my head I’m usually converting from binary to decimal on
each nibble and then converting decimal into hexadecimal. So if I see 0101 I
remember it is 5 in decimal which is the same in hex. If I see 1010 I remember
that it is 8 + 2 = 10 which is one more than 9 so it is A in hex.

2.6 Colors
Colors for display on computers are represented as binary numbers. Colors
are 24 bit which is broken down into 3 8 bit numbers representing red, green,
and blue (RGB). Eight bits give values over the range of 0 to 255 so colors
are represented by 3 numbers such as (255, 0, 255) which gives a color like
this. It is good to note that (255, 255, 255) is white, (0, 0, 0) is black, and
(X, X, X) where all three numbers are the same is gray.

Sometimes colors are represented as a 6 digit binary number in hexadec-
imal form prefixed by 0x such as 0xFF00FF for the color we looked at pre-
viously.

2.7 ASCII
Since computers operate using binary numbers, how do we get them to rep-
resent human languages? The method caught it is called American Standard
Code for Information Interchange (ASCII). Basically, 7 bit numbers were

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/ASCII

CHAPTER 2. NUMBER SYSTEMS 11

mapped to letters, numbers, punctuation, symbols, and control characters.
Some examples are A is 65, Z is 90, a is 97, z is 122, 0 is 48, 9 is 57. The
most used control characters are carriage return (13 or \r) and line feed (10
or \n). Unix based operating systems (Linux, OS X) use line feed to indicate
a new line. Windows uses both (\r\n).

Look up an ASCII table online when you need to know the values.

2.8 Adding and Subtracting Binary Numbers

2.8.1 Default method

2.8.1.1 Addition

Calculate the binary sum 0001 0011 1101 + 0000 1011 0111.

1 1 1 1 1 1

0 0 0 1 0 0 1 1 1 1 0 1

+ 0 0 0 0 1 0 1 1 0 1 1 1

0 0 0 1 1 1 1 1 0 1 0 0
(2.10)

2.8.1.2 Subtraction

Calculate the binary difference 0001 0011 1101− 0000 1011 0111.

0 0 0 ���
0

1 ���
10

0 0 1 1 ���
0

1 ���
���
10

0

1 ���
10

0 1

− 0 0 0 0 1 0 1 1 0 1 1 1

0 0 0 0 1 0 0 0 0 1 1 0
(2.11)

2.8.2 Twos Complement method

In order to represent negative numbers a set of logic has to be overlaid over
the basic unsigned integer binary number system. One method is called the
Two’s Complement method. This arranges 4-bit binary numbers as shown in
Table 2.2. The great part about the two’s complement method is that adding
and subtracting can be done with no knowledge of whether the numbers in-
volved are two’s complement or not. Adding and subtracting can proceed as

CHAPTER 2. NUMBER SYSTEMS 12

if the numbers are unsigned and then the interpretation as a negative or pos-
itive number can be done afterwards. Examples are shown in Equations 2.12
and 2.13.

Decimal Two’s Complement
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000

−1 1111
−2 1110
−3 1101
−4 1100
−5 1011
−6 1010
−7 1001
−8 1000

Table 2.2: This table shows the decimal and two’s complement numbers for
4-bits.

Calculate the two’s complement binary sum 1101 + 0011 (−3 + 3 = 0).

1 1 1

1 1 0 1

+ 0 0 1 1

0 0 0 0
(2.12)

Calculate the two’s complement binary difference 1101− 0011
(−3− 3 = −6).

1 ���
0

1 ���
10

0 1

− 0 0 1 1

1 0 1 0
(2.13)

CHAPTER 2. NUMBER SYSTEMS 13

2.9 Gray Codes
When counting in binary, often times more than one bit changes as the
number increments. This works fine in the ideal world, but in the real world,
the logic controlling each bit might be slightly different. This will cause
one bit to change at a slightly different time than another bit. That causes
glitches in the counting that can be disruptive to the overall system.

Take as an example a robot that represents the cardinal directions as
binary integers as illustrated in Figure 2.1.

N - 00

E - 01

S - 10

W - 11

Figure 2.1: This figure shows using regular binary counting to represent the
cardinal directions.

Using regular binary counting means that as the direction changes from
East to South, two bits have to change. If the bits are driven by real switches
or differing logic they may not change simultaneously leading to possible
outputs of E - W - S or E - N - S. If the data is being used in a sequential
manner it could lead to erroneous actions by the device (robot, car, etc.).
Instead of using regular binary counting, we could use an encoding that only
changes one bit at a time as the directions change as shown in Figure 2.2.

N - 00

E - 01

S - 11

W - 10

Figure 2.2: This figure shows using Gray codes to represent the cardinal
directions.

CHAPTER 2. NUMBER SYSTEMS 14

Counting systems like this are called Gray code after Frank Gray or re-
flected binary code. A 4-bit example is shown in Table 2.3.

Gray Code
0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

Table 2.3: This table shows 4-bit Gray codes with horizontal lines showing
the break for 2- and 3-bit Gray codes.

2.10 Binary Background
Originally, computers were just a bunch of switches, therefore, they only had
two positions: on and off. This also has the benefit that there is a large
amount of noise immunity. A repeater (buffer) can eliminate by recreating
the original signal without noise. These are all great benefits of the binary
system.

https://en.wikipedia.org/wiki/Gray_code

Chapter 3

Boolean Logic

3.1 Introduction
This chapter introduces some basic Boolean logic including gates and Boolean
algebra.

When can you drive through an intersection? When the light is NOT
red. This is the first and simplest logic operator–the NOT element. It simply
changes any TRUE to FALSE or FALSE to TRUE (you can substitute 1 for
TRUE and 0 for FALSE, or on/off).

Another way to think about stop lights is that it is legal to go through
the intersection if the light is green OR yellow. Or you must stop if the light
is NOT green AND NOT yellow. Let’s build a table of values for each of
these situations.

RED GO
TRUE FALSE
FALSE TRUE

Table 3.1: Legally driving through an intersection can be written using a
NOT function.

How do you start a car? In most of the cars I have driven I have to press
on the brake at the same time as I turn the key. To say it another way, the
car starts when I press the break AND turn the key.

pressBreak AND turnKey = startedCar (3.1)

15

CHAPTER 3. BOOLEAN LOGIC 16

RED GO
1 0
0 1

Table 3.2: Crossing an intersection can also be done with 0/1 rather than
TRUE/FALSE.

GREEN YELLOW GO
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

Table 3.3: Legally driving through an intersection can be written using an
OR function. Note that normally in the US, the green and yellow lights
should not both be on.

Again on a car, a particular blinker light will turn on if you turn on the turn
signal or if you turn on the 4-way blinker.

turnSignal OR 4wayBlinker = blinking (3.2)

The AND and OR in the equation are Boolean operators.

3.2 Methods of Representing Logic
It is important to differentiate between different forms of representation be-
cause EN means active low enable. It does not mean NOT(E AND N). The
understanding of which method is being used is usually derived from con-
text. Using the dot (·) everywhere can become burdensome, so when context
makes it obvious (usually examples involving A, B, and C or X and Y) we
may drop the dots and just use adjacency to represent the AND function.

In this class, most of the logic you write will be done in C++. Some of
the following tables will also address how to represent logic in C++.

Going back to the stoplight example, we can look at the same information

CHAPTER 3. BOOLEAN LOGIC 17

using the nomenclature just introduced.

GO = RED (3.3a)
GO = GREEN + Y ELLOW (3.3b)

STOP = GREEN · Y ELLOW (3.3c)

GO = GREEN · Y ELLOW (3.3d)

3.3 Boolean Algebra

3.3.1 Theorems of Boolean Algebra

Ways to show NOT:

Algebra C + +

NOT (X) = X = X ′ !x (3.4a)

(X) = (X ′)
′
= X !(!x) = x (3.4b)

Rules of AND and OR:

AND OR

0 · 0 = 0 1 + 1 = 1 (3.5a)
1 · 1 = 1 0 + 0 = 0 (3.5b)

0 · 1 = 1 · 0 = 0 1 + 0 = 0 + 1 = 1 (3.5c)

And repeated in C++ form:

AND OR

false && false == false true || true == true (3.6a)
true && true == true false || false == false (3.6b)
true && false == false true || false == true (3.6c)

AND OR

X · 1 = X X + 0 = X (3.7a)
X · 0 = 0 X + 1 = 1 (3.7b)

X ·X = X X +X = X (3.7c)

X ·X = 0 X +X = 1 (3.7d)

CHAPTER 3. BOOLEAN LOGIC 18

The order of operations or operator precedence is as follows:

1. Parentheses

2. NOT

3. AND

4. OR

For two and three variables you have the following useful equations:

AND OR

X · Y = Y ·X X + Y = Y +X (3.8a)
(X · Y) · Z = X · (Y · Z) (X + Y) + Z = X + (Y + Z) (3.8b)

(X + Y) · (X + Z) = X + Y · Z X · Y +X · Z = X · (Y + Z) (3.8c)
X · (X + Y) = X X +X · Y = X (3.8d)

(X + Y) · (X + Y) = X X · Y +X · Y = X (3.8e)

X · (X + Y) = X · Y X +X · Y = X + Y (3.8f)

X · Y +X · Z + Y · Z = X · Y +X · Z (3.8g)

(X + Y) · (X + Z) · (Y + Z) = (X + Y) · (X + Z) (3.8h)

A very important pair of equations are DeMorgan’s theorems which allow
us to switch between sums of products and products of sums.

(X1 ·X2 · · · · ·Xn) = X1 +X2 + · · ·+Xn (3.9a)

(X1 +X2 + · · ·+Xn) = X1 ·X2 · · · · ·Xn (3.9b)

The following are very important to remember:

A ·B ̸= AB (3.10a)

A+B ̸= A+B (3.10b)

3.4 Logic Gates and Truth Tables
It is important to be able to transform between equation, diagrams/circuits,
and truth tables.

CHAPTER 3. BOOLEAN LOGIC 19

X X

Figure 3.1: The NOT gate, also called an inverter, outputs NOT(A).

A X
0 1
1 0

Table 3.4: This is the truth table for a NOT gate.

A

B

AB

Figure 3.2: The AND gate outputs A AND B.

A B X
0 0 0
0 1 0
1 0 0
1 1 1

Table 3.5: This is the truth table for an AND gate.

A

B

AB

Figure 3.3: The NAND gate outputs NOT(A AND B).

A B X
0 0 1
0 1 1
1 0 1
1 1 0

Table 3.6: This is the truth table for an NAND gate.

CHAPTER 3. BOOLEAN LOGIC 20

A

B

A+B

Figure 3.4: The OR gate outputs A OR B.

A B X
0 0 0
0 1 1
1 0 1
1 1 1

Table 3.7: This is the truth table for an OR gate.

A

B

A+B

Figure 3.5: The NOR gate outputs NOT(A OR B).

A B X
0 0 1
0 1 0
1 0 0
1 1 0

Table 3.8: This is the truth table for an NOR gate.

Chapter 4

Arduino Startup

4.1 Introduction
This chapter gives the students an introduction to the hardware we are using
and gets them started with the Arduino IDE.

4.2 Datasheets

4.2.1 Arduino Nano Connect RP2040

The data sheet for the Arduino Nano Connect RP2040 is located at
https://docs.arduino.cc/resources/datasheets/ABX00053-datasheet.pdf.

The main website for it is at
https://docs.arduino.cc/hardware/nano-rp2040-connect

The pinout is at
https://content.arduino.cc/assets/Pinout_NanoRP2040_latest.png.

4.2.1.1 RP2040 Microcontroller

The RP2040 microcontroller datasheet (all 654 pages) is at
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf.

If you are ever interested in putting the microcontroller onto a circuit
board yourself, there is a reference design at
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf.

21

https://docs.arduino.cc/resources/datasheets/ABX00053-datasheet.pdf
https://docs.arduino.cc/hardware/nano-rp2040-connect
https://content.arduino.cc/assets/Pinout_NanoRP2040_latest.png
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf

CHAPTER 4. ARDUINO STARTUP 22

4.2.1.2 IMU - ST LSM6DSOXTR

The IMU datasheet is at
https://www.st.com/resource/en/datasheet/lsm6dsox.pdf

4.2.1.3 Mic - ST MP34DT06JTR

The microphone datasheet is at
https://www.st.com/resource/en/datasheet/mp34dt06j.pdf

The overview page shows that the microphone is still actively being pro-
duced.

4.2.1.4 WiFi and Bluetooth - U-blox® Nina W102

The main page for the wireless unit is at
https://www.u-blox.com/en/product/nina-w10-series-open-cpu.

The datasheet is at
https://www.u-blox.com/sites/default/files/NINA-W10_DataSheet_UBX-17065507.pdf.

4.2.1.5 Cryptographic IC - Microchip® ATECC608A

Note that Microchip doesn’t suggest using this chip in new designs so expect
that some future versions of the Nano RP2040 Connect to use the successor
(ATTECC608B).

The datasheet for the 608A is here:
https://ww1.microchip.com/downloads/en/DeviceDoc/ATECC608A-CryptoAuthentication-
Device-Summary-Data-Sheet-DS40001977B.pdf.

Note that it says it is a summary datasheet. You have to sign an NDA
with Microchip to see the full datasheet.

4.2.2 Circuit Board Parts (v0.5)

1. DS18B20+ 1-Wire temperature sensor

2. GX18B20 1-Wire temperature sensor

3. VL6180 Distance sensor

4. SHT31 Temperature and Humidity sensor

5. TC1047 Analog out temperature sensor

https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
https://www.st.com/resource/en/datasheet/mp34dt06j.pdf
https://www.st.com/en/mems-and-sensors/mp34dt06j.html#sample-buy
https://www.u-blox.com/en/product/nina-w10-series-open-cpu
https://www.u-blox.com/sites/default/files/NINA-W10_DataSheet_UBX-17065507.pdf
https://www.microchip.com/en-us/product/ATECC608A
https://www.microchip.com/en-us/product/ATECC608B
https://ww1.microchip.com/downloads/en/DeviceDoc/ATECC608A-CryptoAuthentication-Device-Summary-Data-Sheet-DS40001977B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATECC608A-CryptoAuthentication-Device-Summary-Data-Sheet-DS40001977B.pdf
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://datasheet.lcsc.com/lcsc/2001041707_GXCAS-GX18B20_C472471.pdf
https://www.st.com/resource/en/datasheet/vl6180.pdf
https://sensirion.com/media/documents/213E6A3B/61641DC3/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/21498D.pdf

CHAPTER 4. ARDUINO STARTUP 23

6. ADS7142 Analog-to-digital converter (ADC)

7. Adafruit 1.14" 240x135 Color TFT Display + MicroSD Card Breakout
- ST7789

8. U3V40FX Voltage regulator

9. TMI8837 Motor controller

10. QMC5883L Compass

11. ST25DV16 NFC I2C

12. NeoPixels (WS2812)

13. PCA9535 I2C GPIO

14. SLR0394 LED display

4.3 Schematics and PCB

https://www.ti.com/lit/ds/symlink/ads7142.pdf?ts=1660651868135
https://www.adafruit.com/product/4383
https://www.adafruit.com/product/4383
https://www.pololu.com/product/4012
https://datasheet.lcsc.com/lcsc/2001060933_TMI-TMI8837_C478955.pdf
https://datasheet.lcsc.com/lcsc/2012221837_QST-QMC5883L_C976032.pdf
https://www.st.com/resource/en/datasheet/st25dv16k.pdf
https://datasheet.lcsc.com/lcsc/2106062036_Worldsemi-WS2812B-B-W_C2761795.pdf
https://www.nxp.com/docs/en/data-sheet/PCA9535_PCA9535C.pdf
https://datasheet.lcsc.com/lcsc/1810191633_SUNLIGHT-SLR0394FG3C5BD-3-5_C225905.pdf

C
H

A
P

T
E

R
4.

A
R

D
U

IN
O

STA
R
T

U
P

24

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CEC 326 Board - Main REV: 0.5

Date: 2022 Aug 10

Sheet: 1/6

Drawn By: Seth McNeill

Company: ERAU

Arduino Nano RP2040 Connect
U19

A
rd

u
in

o
 N

a
n
o
 R

P
2
0
4
0

D11 14

D10 13

D9 12

D8 11

D7 10

D6 9

D5 8

D4 7

D3 6

D2 5

GND 4

RST 3

RXD 2

TXD 1Vin30
GND29
RST28
5V27

A524
A423

A221
A120
A019
REF18
3V317
D1316 D12 15

A322

A625

A726

GND GND

SCK CIPO
COPI

BUZZ
D/C
ECS

ERST
SDCS

SW1

SCL
SDA

BIN2

+3.3V

1WIRE

+5V

NEO3.3

REC-RST

Adafruit 114 TFT ADA4383
U28

VIN
3.3V
GND
SCK
MISO
MOSI
TFTCS
TFTRST
DC
SDCS
Backlight

A
d
a
fr

u
it

 1
.1

4
''

T
FT

+5V

GND

SCK
CIPO
COPI
ECS
ERST
D/C
SDCS
BACKLIGHT

VBAT VBAT_SW_PRE

VBAT_SW

GND

+5V

BC3AAAPC
U29

+BATT
1

-BATT
2 B

A
T
T
E
R
Y

H
O

LD
E
R

VBAT

MR1-110-C5N-BB
SW7

21

FUET-8530-05
BUZZER1

2

1

3
4

2SC2411KT146R
Q2

1
N

4
0
0
1
_
C

2
8
9
2
3
2
6

D2

+5V

GND

178
R9

BUZZ

+3.3V

10K
R14

TS-1103S-B-I
SW2

1 2

3 4

TS-1103S-B-I
SW1

1 2

3 4

GND

SW2

SW1

REC-RST

GND

K2-1177SR-A3DW-06
SW10

4 3

2 1

10K
R15

+3.3V

BACKLIGHT

SERVO1

AIN2
AIN1

BIN1MUX_INT

TEMP1
TEMP2

Header-Female-2.54_1x3
P3

123

0.51Ω
R8

GND

GND

X6511WV-02H-C30D60
H21

1
2

2 GND

1000uF
C28

1000uF
C31

+5V VBAT_SW

GNDGND

BC3AAPC
U1

+BATT
1

-BATT
2 B

A
T
T
E
R
Y

H
O

LD
E
R

VBAT_SW_PREVBAT_SW

U3V40Fx Step-Up Voltage Regulator
U2

EN1

VIN2
VIN3

GND4
GND5

OUT6

U
3

V
4

0
Fx

 S
te

p
-U

p
V
o
lt

a
g

e
 R

e
g

u
la

to
r

Figure 4.1: This is the schematic of the version 0.5 of the board. This is the board used in Fall 2022.

C
H

A
P

T
E

R
4.

A
R

D
U

IN
O

STA
R
T

U
P

25

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CEC 326 Board - Motors REV: 0.5

Date: 2022 Aug 10

Sheet: 2/6

Drawn By: Seth McNeill

Company: ERAU

+3.3V

+3.3V

AIN1
AIN2

BIN1
BIN2

BOUT1
BOUT2

AOUT2
AOUT1

GND

GND

GND

GND

TMI8837
U21

VM1

OUT12

OUT23

GND4 IN2 5IN1 6EN 7VCC 8E
P

9

TMI8837
U20

VM1

OUT12

OUT23

GND4 IN2 5IN1 6EN 7VCC 8E
P

9

KF301-5.0-2P
U33

11

22

KF301-5.0-2P
U32

11

22

AOUT1
AOUT2

BOUT2
BOUT1

+5V

GND

SERVO1
servo
U25

GND1
PWR2
DATA3

K9-1267B-R
SW13

3
2

1
K9-1267F-L
SW14

1

2
3

Contact switches to detect impact

ANT
GPO_RFID

I2C Addresses:
0x2D, 0x53, 0x57

SDA
SCL

GND

+3.3V

ST25DV16K-IER6S3
U41

V_EH1

AC02

AC13

VSS4 SDA 5SCL 6GPO(OD) 7VCC 8

+3.3V

4.7kΩ
R18

QMC5883L
U42

SCL1

VDD2

NC3

S14

NC5

NC6

NC7

SETP8 GND 9C1 10GND 11SETC 12VDDIO 13NC 14DRDY 15SDA 16

Magnetic Compass

I2C: 0x0D

NFC/RFID

+3.3V +3.3V

GND

SDASCL

4.7uF
C2

COMP_SETC

COMP_SETC

COMP_DRDY

GNDGND

BACK_SWFRONT_SW
10kΩ
R11

10kΩ
R17

+3.3V+3.3V

KH-2.54PH90-1X3P-L13.8
H1

11

22

33

SERVO1

GND

+5V

Hobby Gearmotor Left Ziptied
M1

Motor
Mount
Left

Hobby Gearmotor Right Ziptied
M2

Motor
Mount
Right

Castor Bearing Wheel
W1

Castor
Bearing
Wheel

Header-Male-2.54_1x3
H5

3

1
2

+5V

+5V
Header-Male-2.54_1x3

H3

3

1
2

GND

GND

VBAT_SW

VBAT_SW

100uF
C32

100uF
C33

MOTPWR1

MOTPWR2

220nF
C1

Figure 4.2: This is the schematic of version 0.5 of the board. This is the board used in Fall 2022.

C
H

A
P

T
E

R
4.

A
R

D
U

IN
O

STA
R
T

U
P

26

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CEC 326 Board - Sensors REV: 0.5

Date: 2022 Aug 10

Sheet: 3/6

Drawn By: Seth McNeill

Company: ERAU

TADDR
TALERT

GND

GND

+3.3V

SCL

SDA

SHT31-DIS-B
S2

SDA1

ADDR2

ALERT3

SCL4 VDD 5NRESET 6R 7VSS 8

EPAD 9

SHT31_RST

Address: 0x44 or 0x45

0Ω
R16 1WIRE

GND

+3.3V
DS18B20+
U24

GND 1
DQ 2

VDD 3

1-Wire Temperature

GX18B20
U23

VDD 3

DQ 2

GND 1

GX18B20
U22

VDD 3

DQ 2

GND 1

4.7kΩ
R38

+3.3V

+3.3V +3.3V

GND GND

1WIRE 1WIRE

1-Wire Temperature

TC1047AVNBTR
U27

VSS 3VDD1

VOUT 2 TEMP0

GND

+3.3V

Analog Temperature

POT

GND

+3.3V

3K
R41

LIGHT1

GND

+3.3V

GL3637(20-30K)
R42GL3637(20-30K)

R10

+3.3V

GND

LIGHT2

3K
R46

10kΩ
R43

LIGHT2

ADC1_ALRT

LIGHT1

SDA
SCL

GND

+3.3V+3.3V

0Ω
R39

0x1F
0x18-0x1F possible

ADS7142IRUGR
U36

AVDD1

AINP/AIN02

AINM/AIN13

ADDR4

BUSY/RDY#5 ALERT# 6SDA 7SCL 8DVDD 9GND 10

10kΩ
R44

ADC2_ALRTADC2_BSY

POT
TEMP0

SDA
SCL

0x18
0x18-0x1F possible

+3.3V+3.3V

GNDGND

0Ω
R40

ADS7142IRUGR
U37

AVDD1

AINP/AIN02

AINM/AIN13

ADDR4

BUSY/RDY#5 ALERT# 6SDA 7SCL 8DVDD 9GND 10

Analog Temperature

+3.3V

GND

TEMP1
TC1047AVNBTR
U26

VSS 3VDD1

VOUT 2

Analog Temperature

+3.3V

GND

TEMP2
TC1047AVNBTR
U38

VSS 3VDD1

VOUT 2

+3.3V

GND

SCL
SDA
Prox1EN
Prox1ALRT

ADC1_BSY

10kΩ
R6

10kΩ
R7

VL6180_Module_8pin

P1

3.3V 1

2.8V 2

GND 3

SCL 4

SDA 5

CE 6

GPIO1 7VL6180
Proximity
Module

I2C 0x29

NC 8

5kΩ
R57

Figure 4.3: This is the schematic of version 0.5 of the board. This is the board used in Fall 2022.

C
H

A
P

T
E

R
4.

A
R

D
U

IN
O

STA
R
T

U
P

27

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CEC 326 Board - Mux/Memory REV: 0.5

Date: 2022 Aug 10

Sheet: 5/6

Drawn By: Seth McNeill

Company: ERAU

ADC1_BSY
ADC2_BSY

10K
R5

10K
R4

10K
R3

+3.3V

10K
R1

GND

0x21

COMP_DRDY

SDA
SCL

GND

+3.3V

PCA9535CPW,118
U40

INT#1

A12

A23

IO0_04

IO0_15

IO0_26

IO0_37

IO0_48

IO0_59

IO0_610

IO0_711

VSS12 IO1_0 13IO1_1 14IO1_2 15IO1_3 16IO1_4 17IO1_5 18IO1_6 19IO1_7 20A0 21SCL 22SDA 23VDD 24

SW2

SHT31_RST

MUX_INT

SCL
SDA

GND

+3.3V

SLR0394FG3C5BD-3.5
LED19

A
1

B
2

C
3

D
4

E
5

F
6

G
7

D
I

8
D

IG
1

9
D

IG
2

1
0

D
IG

3
1

1
D

IG
4

1
2

0x20

PCA9535CPW,118
U31

INT#1

A12

A23

IO0_04

IO0_15

IO0_26

IO0_37

IO0_48

IO0_59

IO0_610

IO0_711

VSS12 IO1_0 13IO1_1 14IO1_2 15IO1_3 16IO1_4 17IO1_5 18IO1_6 19IO1_7 20A0 21SCL 22SDA 23VDD 24

1
0
K

R
2
0

1
0
K

R
2
1

1
0
K

R
2
2

1
0
K

R
2
3

+3.3V

D
IG

1
D

IG
2

D
IG

3
D

IG
4

DIG1
DIG2
DIG3
DIG4

5
1
0
Ω

R
2
4

5
1
0
Ω

R
2
5

5
1
0
Ω

R
3
4

5
1
0
Ω

R
3
5

5
1
0
Ω

R
3
6

5
1
0
Ω

R
3
7

5
1
0
Ω

R
4
5

5
1
0
Ω

R
4
7

+3.3V

LED_DI

LED_G

LED_A
LED_B
LED_C
LED_D
LED_E
LED_F

LED_A
LED_B
LED_C
LED_D
LED_E
LED_F
LED_G
LED_DI

BACK_SW
FRONT_SW

TALERT
GPO_RFID Prox1EN

ADC1_ALRT
ADC2_ALRT

Prox1ALRT

Figure 4.4: This is the schematic of version 0.5 of the board. This is the board used in Fall 2022.

C
H

A
P

T
E

R
4.

A
R

D
U

IN
O

STA
R
T

U
P

28

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CEC 326 Board - NeoPixels REV: 0.5

Date: 2022 Aug 10

Sheet: 4/6

Drawn By: Seth McNeill

Company: ERAU

NEO5NEO3.3

+5V+3.3V

10K
R13

10K
R12

BSS138_C400505
Q3

Level shifting
https://electronics.stackexchange.com/questions/20362/how-is-this-circuit-for-level-converting-5v3-3v-working

+5V

GND

WS2812B-B/W
LED5

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED3

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED2

VDD 1

DOUT 2VSS3 DIN4

GND

+5V

WS2812B-4020
LED0

D
IN

1

V
D

D
2

D
O

U
T

3

V
S

S
4

GND

+5V

WS2812B-4020
LED4

D
IN

1

V
D

D
2

D
O

U
T

3

V
S

S
4

WS2812B-B/W
LED1

VDD 1

DOUT 2VSS3 DIN4

N
E

O
5

GND

+5V

WS2812B-4020
LED8

D
IN

1

V
D

D
2

D
O

U
T

3

V
S
S

4

WS2812B-4020
LED12

D
IN

1

V
D

D
2

D
O

U
T

3

V
S
S

4

WS2812B-B/W
LED6

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED7

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED13

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED14

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED15

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED16

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED17

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED9

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED10

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

WS2812B-B/W
LED11

VDD 1

DOUT 2VSS3 DIN4

+5V

GND

NEO_ROW1

+5V

GND

NEO_ROW1 +5V

GND

NEO_ROW2

NEO_ROW2

Figure 4.5: This is the schematic of version 0.5 of the board. This is the board used in Fall 2022.

C
H

A
P

T
E

R
4.

A
R

D
U

IN
O

STA
R
T

U
P

29

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CEC 326 Board - Capacitors REV: 0.5

Date: 2022 Aug 10

Sheet: 6/6

Drawn By: Seth McNeill

Company: ERAU

100nF
C10

100nF
C3

100nF
C4

100nF
C5

100nF
C6

100nF
C7

100nF
C8

100nF
C9

100nF
C11

100nF
C12

100nF
C13

100nF
C14

100nF
C15

+3.3V

GND

100nF
C16

100nF
C17

100nF
C18

100nF
C19

100nF
C20

+5V

GND GND

+5V

100nF
C21

100nF
C22

100nF
C23

100nF
C24

100nF
C25

100nF
C26

100nF
C27

Figure 4.6: This is the schematic of version 0.5 of the board. This is the board used in Fall 2022.

CHAPTER 4. ARDUINO STARTUP 30

Figure 4.7: This shows the top of version 0.5 of the board for this class to
help locate components.

Chapter 5

I2C GPIO/Multiplexer

5.1 Introduction
This chapter introduces students to using the PCA9535 I2C GPIO chip to
control LEDs and input button presses. The PCA9535 has 16 I/O pins that
are controlled via I2C. It’s I2C address can be set between 0x20 and 0x27
through setting the A0-A2 pins either high (1) or low (0). These pins control
the lower 3 bits of the address. The two 8-bit I/O pin ports (IO0 and IO1)
are controlled via a set of eight registers. Registers are binary numbers where
each bit sets the configuration of one of the I/O pins.

5.2 Registers

5.2.1 Registers 0 and 1 - Input Registers

These registers reflect the incoming logic levels of the port pins no matter
whether the port is configured as an input or an output. These ports are
read only; you cannot write to them. Table 5.1 shows the registers.

5.2.2 Registers 2 and 3 - Output Registers

These registers control the output value of the pins that are set as outputs.
Pins are set as outputs or inputs in Registers 6 and 7. Note that the default
output value of all the pins is 1 or logic high. It is important to note that

31

CHAPTER 5. I2C GPIO/MULTIPLEXER 32

I/O Input Register Port 0
Bit 7 6 5 4 3 2 1 0
Symbol I0.7 I0.6 I0.5 I0.4 I0.3 I0.2 I0.1 I0.0
Default X X X X X X X X

I/O Input Register Port 1
Bit 7 6 5 4 3 2 1 0
Symbol I1.7 I1.6 I1.5 I1.4 I1.3 I1.2 I1.1 I1.0
Default X X X X X X X X

Table 5.1: PCA9535 input port values are shown here. The Default value of
X means that it’s value is not set at power on. Also, note that the Port 0
symbols are the letter I followed by the number zero, not the letter O.

the values in these registers have no effect on pins that are defined as inputs.
Table 5.2 shows the registers.

I/O Output Register Port 0
Bit 7 6 5 4 3 2 1 0
Symbol O0.7 O0.6 O0.5 O0.4 O0.3 O0.2 O0.1 O0.0
Default 1 1 1 1 1 1 1 1

I/O Output Register Port 1
Bit 7 6 5 4 3 2 1 0
Symbol O1.7 O1.6 O1.5 O1.4 O1.3 O1.2 O1.1 O1.0
Default 1 1 1 1 1 1 1 1

Table 5.2: PCA9535 output port values are shown here. The Default value
of 1 means that it’s has a high output at power on.

5.2.3 Registers 4 and 5 - Polarity Inversion Registers

For this class we will not be changing the Polarity Inversion Registers.

5.2.4 Registers 6 and 7 - Configuration Registers

These registers set whether a particular I/O is an input or an output. This is
set on a per-pin basis. Setting a register bit to 1 configures the corresponding

CHAPTER 5. I2C GPIO/MULTIPLEXER 33

pin to be an input. Setting a register bit to a 0 configures the corresponding
pin to be an output. Table 5.3 shows the registers.

I/O Configuration Port 0
Bit 7 6 5 4 3 2 1 0
Symbol C0.7 C0.6 C0.5 C0.4 C0.3 C0.2 C0.1 C0.0
Default 1 1 1 1 1 1 1 1

I/O Configuration Port 1
Bit 7 6 5 4 3 2 1 0
Symbol C1.7 C1.6 C1.5 C1.4 C1.3 C1.2 C1.1 C1.0
Default 1 1 1 1 1 1 1 1

Table 5.3: PCA9535 configuration port default values are shown here. Since
all configuration bits default to a value of 1, all pins default to being inputs.

5.2.5 Pin mapping for Lab Robot

a

g

d

f

e

b

c

Figure 5.1: Seven segment LED display segments are labeled as shown.

CHAPTER 5. I2C GPIO/MULTIPLEXER 34

+3.3V +3.3V

510Ω 10kΩ

LED_A DIG1

Figure 5.2: A single segment of a seven segment digit is connected with this
circuit. Setting LED_A to 1 (open) and DIG1 to 0 (closed) lights up the
segment.

CHAPTER 5. I2C GPIO/MULTIPLEXER 35

Figure 5.3: This shows the mapping between the PCA9535 at address 0x21
and the seven segment display segments.

Figure 5.4: This shows the mapping between the PCA9535 at address 0x21
and the seven segment display digits.

CHAPTER 5. I2C GPIO/MULTIPLEXER 36

Figure 5.5: This shows the mapping between the PCA9535 at address 0x21
and the seven segment display showing most significant and least significant
digits.

Chapter 6

Buttons and Serial
Communications

6.1 Introduction
This chapter introduces students to using buttons and serial communications.

6.2 Buttons
A typical button circuit is shown in Figure 6.1. The input is high until the
button is pressed. Unfortunately, being mechanical, buttons do not always
create nice, clean switched inputs as is shown in Figure 6.2. Maxim Inte-
grated has a nice paper on the topic advertizing their devices to solve the
problem. However, if we don’t have the option of adding their hardware,
some work can be done in software to debounce an input. As Maxim men-
tions, software debouncing is not free. It does incur some overhead so you
probably do not want to do it for many inputs. An example of software
debouncing is in Listing 6.1.

/*
Debounce

Each time the input pin goes from LOW to HIGH (e.g.
because of a push−button
press), the output pin is toggled from LOW to HIGH
or HIGH to LOW. There’s a

37

https://www.maximintegrated.com/en/design/technical-documents/app-notes/2/287.html

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 38

minimum delay between toggles to debounce the
circuit (i.e. to ignore noise).

The circuit:
− LED attached from pin 13 to ground through 220 ohm
resistor

− pushbutton attached from pin 2 to +5V
− 10 kilohm resistor attached from pin 2 to ground

− Note: On most Arduino boards, there is already an
LED on the board connected
to pin 13, so you don’t need any extra components

for this example.

created 21 Nov 2006
by David A. Mellis
modified 30 Aug 2011
by Limor Fried
modified 28 Dec 2012
by Mike Walters
modified 30 Aug 2016
by Arturo Guadalupi

This example code is in the public domain.

https://www.arduino.cc/en/Tutorial/BuiltInExamples/
Debounce

*/

// constants won’t change. They’re used here to set
pin numbers:
const int buttonPin = 9; // the number of the
pushbutton pin
const int ledPin = 13; // the number of the LED
pin

// Variables will change:

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 39

int ledState = LOW; // the current state of
the output pin
int buttonState; // the current reading
from the input pin
int lastButtonState = LOW; // the previous reading
from the input pin

// the following variables are unsigned longs
because the time, measured in
// milliseconds, will quickly become a bigger number
than can be stored in an int.

unsigned long lastDebounceTime = 0; // the last
time the output pin was toggled
unsigned long debounceDelay = 50; // the debounce
time; increase if the output flickers

void setup() {
Serial.begin(115200);
while(!Serial) delay(10);
Serial.println("Starting...");

pinMode(buttonPin, INPUT);
pinMode(ledPin, OUTPUT);

// set initial LED state
digitalWrite(ledPin, ledState);
}

void loop() {
// read the state of the switch into a local
variable:
int reading = digitalRead(buttonPin);

// check to see if you just pressed the button
// (i.e. the input went from LOW to HIGH), and you’
ve waited long enough
// since the last press to ignore any noise:

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 40

// If the switch changed, due to noise or pressing:
if (reading != lastButtonState) {

// reset the debouncing timer
lastDebounceTime = millis();

}

if ((millis() − lastDebounceTime) > debounceDelay) {
// whatever the reading is at, it’s been there for
longer than the debounce
// delay, so take it as the actual current state:

// if the button state has changed:
if (reading != buttonState) {
buttonState = reading;

// only toggle the LED if the new button state is
HIGH
if (buttonState == HIGH) {

ledState = !ledState;
}
}

}

// set the LED:
digitalWrite(ledPin, ledState);

// save the reading. Next time through the loop, it’
ll be the lastButtonState:
lastButtonState = reading;

}

Listing 6.1: This is the Arduino example of software debouncing.

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 41

Vdd

Vout

Rpull-up

Figure 6.1: This is a typical button input circuit. It is active low in that the
output signal will be high until the button is pressed.

6.3 Serial Communications
Serial communications sends data one bit at a time from one device to an-
other as shown in Figure 6.3. This is in contrast to parallel communications
where multiple bits (8 in the example) are transferred simultaneously between
devices as shown in Figure 6.4. As can be seen parallel communications is
much faster than serial since you can send so many bits simultaneously. How-
ever, parallel requires many more pins on each device to communicate. This
is challenging in the embedded systems world since most microcontrollers
don’t have many pins. Also, connectors with many pins tend to fail more of-
ten than connectors with fewer pins. Because of these reasons, the embedded
world communicates primarily with serial protocols.

A table of serial protocols is listed in Table 6.1.

6.3.1 Universal Asynchronous Receiver-Transmitter

The Universal Asynchronous Receiver-Transmitter (UART) protocol has been
around quite a while. Older computers used to ship with serial ports that
used this protocol, usually implemented as the RS-232 protocol. UARTs are
used to communicate between two devices. It does not allow for more than

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 42

−40 −20 0 20 40
Time (μs)

0.0

0.5

1.0

1.5

2.0

2.5

Vo
lta

ge
 (V

)

Figure 6.2: This is an example of what the output signal from a button with
the circuit in Figure 6.1 could look like.

Device 1 Device 2
01101101

Figure 6.3: Serial transfers one bit at a time.

two devices. It is full duplex and communicates over 2 wires (plus a ground
for reference). One wire transmits data from Device 1 to Device 2 and is

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 43

Device 1 Device 2

0
1
1
0
1
1
0
1

Figure 6.4: Parallel transfers multiple bits at a time.

Protocol Description
UART Used to communicate between computers and Arduino boards
SPI Used for higher speed communications between devices on circuit boards
I2C Only uses two wires and allows for multiple controllers and peripherals
1-Wire Only requires 1 wire and ground (no power) to communicate
CAN Often used in the automotive industry
RS-485 Differential signaling for robustness (noisy and long wires)
USB Ubiquitous on computers now

Table 6.1: This is a list of some of the more common serial protocols. The
grayed out protocols will not be discussed further.

connected to Device 1’s TX pin and Device 2’s RX pin. The second wire
transmits data from Device 2 to Device 1 and is connected to Device 1’s RX
pin and Device 2’s TX pin. This is illustrated in Figure 6.5. This proto-
col does require both devices to use the same specified transmission speed.
Some common speeds are 9600, 14,400, 57,600, and 115,200. It can go faster.
Nowadays, it is generally best to go as fast as possible so that the commu-
nications takes less of the processor’s time. The most common speed used
now seems to be 115,200. The asynchronous part of the name comes from
the fact that there is no clock line for UARTs. It typically has a maximum
speed of 1.5 megabits per second (Mbps).

UART is the protocol used to communicate between the computer and
your Arduino board. You can see this in the code in the setup function where
Serial.begin(115200) or Serial.begin(9600) shows up often.

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 44

Device 1 Device 2
TX

RXRX

TX

Figure 6.5: A UART has full duplex between two entities.

6.3.2 Serial Peripheral Interface

The Serial Peripheral Interface (SPI) is a full-duplex serial interface shown
in Figure 6.6. It is setup in a controller-peripheral (previously known as
master-slave) architecture with only one controller on the bus. It does allow
for multiple peripherals by giving each peripheral its own chip select (CS)
line. Since it is synchronous, it does require a clock line. This means that it
takes a minimum of 4 wires as listed in Table 6.2. The SCLK signal is the
clock signal used by both the controller and peripheral. There is one CS line
per peripheral. The CS line lets the controller specify which peripheral it is
communicating with. The COPI line is the data going from the controller to
the peripheral. The CIPO line is the data going from the peripheral to the
controller.

SPI has a maximum data rate of 60 Mbps, which is the fastest of the 3
protocols commonly used in the embedded world. Because of this, it is used
in more data intense situations like SD Cards (where we will be using it) and
displays.

Signal Description
SCLK Clock signal to keep everything synchronized
CS Chip select–tells a peripheral that the controller is communicating with it
COPI Controller Out, Peripheral In (used to be MOSI)
CIPO Controller In, Peripheral Out (used to be MISO)

Table 6.2: The SPI protocol uses these signals to connect.

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 45

Controller Peripheral 1

Peripheral 2

CS1 CS

SCLK SCLK

COPI COPI

CIPO CIPO

CS2

CS

SCLK

COPI

CIPO

Figure 6.6: SPI allows for one (sometime more) controller and multiple pe-
ripherals.

6.3.3 Inter-Integrated Circuit

The Inter-Integrated Circuit (I2C, IIC, or I2C) protocol is multi-controller
and multi-peripheral. Basically, any device connected to the bus can drive
the communication. It is single ended so data only flows one way at a time. It
only requires 3 wires, SCL - clock, SDA - Data, and a ground reference. SCL
and SDA do require pull-up resistors so that devices only have to pull the
lines to ground to communicate as shown in Figure 6.7. Instead of using chip
select lines like SPI, I2C requires each peripheral to have a unique address.
I2C addresses for modules that are on the board or may be used with the
board can be seen in Table 6.3. I2C has a max speed of 3.4 Mbps but is only
100 kbps in standard mode.

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 46

Controller Peripheral 1 Peripheral 2

R
es

is
to

r

R
es

is
to

r

SDA

SCL

SCL SDA SCL SDA SCL SDA

Vdd

Figure 6.7: I2C allows for multiple controllers and peripherals on the same
bus.

Address (HEX) Module
0x44 or 0x45 SHT31-DIS Temperature/Humidity
0x39 APDS-9960 Light, Color, Proximity, Gesture
0x77 BME688 Temperature, Humidity, Gas
0x2D, 0x53, and 0x57 ST25DV16 Dynamic NFC/RFID Tag IC
0x30 or other NeoKey 1x4 QT breakout board
0x10 STEMMA MiniGPS
0x6A or 0x6B LSM6DSOX IMU on the Nano Connect
0x60 ATECC608A Cryptographic on the Nano Connect
0x0D QMC5883 Magnetic Compass
0x29 VL6180 Proximity Sensor, address moveable
0x18, 0x1F ADS7142 ADC, address based on wiring
0x20, 0x21 PCA9535 I2C to GPIO, address based on wiring

Table 6.3: I2C addresses for relevant modules.

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 47

6.4 In Case of Upload Lock-up or Failure
If the Arduino IDE is having trouble uploading to the Arduino Nano RP2040
Connect, try double pressing (not too fast) the reset button on the Nano once
the IDE starts trying to upload.

6.5 Arduino Programming Suggestions
In general, try to start from an existing set of code (an example for instance)
when working on something. For example, if you need to use the APDS-9960,
load one of the examples from the library, then modify it until it does what
you want. Once you have written a few sketches, you might write a generic
starting point for your subsequent sketches.

6.6 Arduino Button Setup
An example of how to setup the buttons on the CEC 325 board. Some im-
portant details to note is that the left button is attached to pin D9 (referred
to as 9 in the Arduino infrastructure) which is attached to the RP2040 on the
Arduino Nano RP2040 Connect module. The RP2040 has internal pull-up re-
sistors that are tied correctly to the Arduino IDE so that the pins can be setup
using pinMode(LEFT_BUTTON_PIN, INPUT_PULLUP); and do not re-
quire an external pull-up resistor. The right button is attached to pin A7 on
the module which is routed to the WiFiNINA module. This module’s inter-
nal pull-up is not implemented in the Arduino IDE (as of 2022 February 03).
Therefore, it needs an external pull-up AND requires the sketch to include
"WiFiNINA.h" AND the pin variable HAS to be declared using #define
rather than a const int.

/* button_demo.ino

*
* Gives an example of how to use the buttons on

* the CEC 325 board.

*
* Seth McNeill

* 2022 February 03

*/

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 48

#include "WiFiNINA.h" // for A4−A7 and wifi/bluetooth

#define LEFT_BUTTON_PIN 9 // This input is on the
RP2040 and has builtin pullup that works

#define RIGHT_BUTTON_PIN A7 // This input is on the
WiFiNINA and doesn’t have working internal pullup

void setup() {
Serial.begin(115200);
//while(!Serial) delay(10);
delay(2000);

Serial.println("Starting...");

pinMode(LEFT_BUTTON_PIN, INPUT_PULLUP);
pinMode(RIGHT_BUTTON_PIN, INPUT);
pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {
// note that the buttons read 1 (HIGH or true) when
not pressed
if(!digitalRead(LEFT_BUTTON_PIN)) {

Serial.println("Left button pushed");
}
if(!digitalRead(RIGHT_BUTTON_PIN)) {

Serial.println("Right button pushed");
}
delay(100); // keeps the loop from running too fast
with nothing pushed

}

Listing 6.2: This is an example of how to setup the buttons on the CEC 325
board.

CHAPTER 6. BUTTONS AND SERIAL COMMUNICATIONS 49

6.7 Arduino Serial Setup
The serial port has to be setup in the setup() function in the Arduino
IDE. An example of setting it up is shown in Listing 6.3.

void setup() {
Serial.begin(115200); // starts the serial
connection at 115200 data (baud) rate
// If you are attached to a computer (not a robot on
battery power

while(!Serial) delay(10); // wait for serial to
start
// delay(2000); // if might be on battery, just
wait a bit for it to start
Serial.println("Starting...");

}

void loop() {
Serial.println("This has a new line character at the
end");

Serial.print("This does not have a new line at the
end: ");
Serial.println(millis());
delay(5000);

}

Listing 6.3: This is an example of how to start the serial port at 112,500 in
the Arduino system.

I strongly suggest having the setup() function output to the serial port
right after the serial port is started so that you can know that your board
has booted. Note that if you do not have a serial port (your robot is running
off of batteries so that it is not plugged into a computer) you need to remove
the while(!Serial) delay(10) line and replace it with some sort of
timeout function. A delay(2000) is usually sufficient to allow the serial
to start if it exists but not hang if it doesn’t. There are more complicated
ways to do this, but that will be left as an exercise for the reader.

Chapter 7

Displays

7.1 Introduction
Adding a display to a device allows much more information to be shared from
the device to the user than just using LEDs or buzzers. There are several
types of displays that are commonly used in the embedded systems world.

7.1.1 LCD

The most common is a Liquid Crystal Display (LCD). Most of the computer
monitors and computers are LCD. This technology gives good contrast, fast
response (which gamers like), and minimal burn in. Old CRT displays had
to have screensavers so that whatever was usually showing on the display
wouldn’t be there permanently. Thankfully modern displays don’t typically
have this problem. LCDs do require a backlight. This determines how bright
the colors are. The pixels in the display just modulate how much of the
backlight is showing.

At times you will find TFT displays. This stands for thin-film-transistor
liquid-crystal display. They are a better version of LCD.

7.1.2 eInk

eInk displays are also available for embedded systems. These displays are
of particular interest because they keep their display even when the power
is turned off. This allows for very low power operations. The downsides
are that they work off of reflected light so require special backlighting to be

50

CHAPTER 7. DISPLAYS 51

viewed at night and that they are very slow. A small display may take several
seconds to refresh and some recommend not to update them more than once
every few minutes if possible.

7.1.3 OLED

The cool part about Organic Light Emitting Diode (OLED) displays is that
instead of each pixel blocking the backlight to make the display like in LCDs,
in OLED displays each pixel is an LED that emits light. This makes OLED
displays very bright with very good contrast ratios. They also have fast
response times. Some OLED displays will get dimmer with time. Adafruit
notes that for their small OLED displays the dimming becomes noticeable
after about 1000 hours of being on. This is 41.7 days, so after a year of
continuous use, an OLED display might not be very bright.

7.2 Pixel Layout
The layout of pixels on a display can be thought of as a cartesian coordinate
system with a couple minor differences. First, pixels take up space, so the
indexing is between the lines rather than on the lines. Second, the +Y axis
points downward as shown in Figure 7.1. The units for the coordinates is
always pixels and the coordinates are always integers.

Pixels can vary in size. This is important to keep in mind if you are trying
to display something with a specific size. Pixel size varies from display to
display so read carefully if you want something to display a specific size.

7.3 Using the Display
The display on the lab board is a 1.14" TFT display 240 pixels wide and
135 pixels high. Two libraries are required to use it:

1. Adafruit_GFX.h - this is the generic graphics library

2. Adafruit_ST7789.h - this is specific to our display

An example that shows much of the available functionality can be found
(once the libraries are installed) at Examples → Adafruit ST7735 and ST7789

https://www.adafruit.com/product/938
https://www.adafruit.com/product/938

CHAPTER 7. DISPLAYS 52

x →

y
→

0 1 2 3 4 5

0

1

2

3

4

5

(3,2)

(1,4)

Figure 7.1: Pixels in a display occupy space are are referenced to the top left
corner with the positive Y axis going down.

Library → graphicstest_st7789. The following have to be defined to use a
display:

1. Width - how many pixels wide the display is

2. Height - how many pixels high the display is

3. Reset pin - Allows the microcontroller to reset the display

4. CS - Chip Select, used by SPI to select the display when communicating

5. DC - Data/Command pin used to determine the type of data being
sent to the display

An example of creating a display instance is as follows:
Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RST
);

Some useful methods that can be called on the display object are:

1. fillScreen - Fills the screen with the specified color. Usually used to
clear the screen.

2. setTextSize - sets the size of the text (usually 2-4)

CHAPTER 7. DISPLAYS 53

3. setTextColor - set what color the text should be. Some examples are

(a) ST77XX_BLACK

(b) ST77XX_BLUE

(c) ST77XX_RED

(d) ST77XX_YELLOW

4. print/println - these act the same as they do when using Serial

5. drawBitmap - draws a bitmap stored using PROGMEM or a canvas.
It requires the following arugments

(a) xpos - the x position for the image

(b) ypos - the y position for the image

(c) bitmap variable - the variables with the actual image

(d) width - image width in pixels

(e) height - image height in pixels

6. More can be found here.

7.3.1 Using Canvas to Reduce Flicker

Redrawing by calling fillScreen() causes a flicker that can be problem-
atic. The solution is to create a canvas in memory that the program draws to
and then copy it over to the display using drawBitmap. This technique does
require that the microcontroller have enough memory to store the canvas.

The method requires creating a canvas variable, drawing everything to
the canvas and then copying the canvas over to the display. Listing 7.1 shows
the basics of this method.

// unlike the online example,
//this is a 16−bit color canvas
GFXcanvas16 canvas(240,135);
...
canvas.fillScreen(ST77XX_BLACK); // clear canvas
canvas.setCursor(0,0);
canvas.setTextSize(3);
canvas.println("Hello world!");

https://learn.adafruit.com/adafruit-gfx-graphics-library/graphics-primitives

CHAPTER 7. DISPLAYS 54

tft.drawRGBBitmap(0, 0, canvas.getBuffer(),
240, 135); // copy canvas to display

Listing 7.1: Snippets showing how to use a canvas to reduce flicker when
updating a display.

Chapter 8

Sampling and Data Collection

8.1 Introduction
This chapter introduces students to the concepts of Analog-to-Digital Con-
verters (ADCs) and data collection.

8.2 Sampling
The real world has signals that are continuous in both time and amplitude.
Unfortunately, microcontrollers do not have continuous time or amplitude
capabilities. This means that real signals have to be quantized in amplitude
and sampled in time before they can be analyzed by a microcontroller. Figure
8.1 shows what quantization in amplitude looks like. The microcontroller
can only see values of -3 to +3 in this example even though the real signal
has values between these. Figure 8.2 includes the errors incurred due to
quantization.

Sampling in the time domain could be done in a random fashion as demon-
strated in Figure 8.3 but that is rarely a good idea. The math that can be
done with a signal that is sampled at an even rate as shown in Figure 8.4 is
very powerful. Therefore, we try very hard to sample at a specific frequency
with minimal jitter in the time between samples.

A signal that has been both quantized and sampled is shown in Figure
8.5. The signal has been reduced to the sequence of numbers: {0,3,3,0,-3,-2}.

It is important to sample fast enough to actually capture the signal of
interest. The minimum sampling rate to capture a particular signal is called

55

CHAPTER 8. SAMPLING AND DATA COLLECTION 56

0 1 2 3 4 5 6
Time (s)

−3

−2

−1

0

1

2

3

Si
gn

al
 M
ag

ni
tu
de

 (a
rb
itr
ar
y)

Analog
Quantized

Figure 8.1: This shows amplitude quantization.

the Nyquist rate or Nyquist frequency. The sampling rate for a signal must
be at least twice the highest frequency in the signal in order to correctly see
the signal in a sampled system. Figure 8.6 shows the best case when sampling
at exactly twice the frequency of the signal. This can be noted since there
are two sample points in one period of the sine wave. The worst case of
sampling at exactly the Nyquist rate is shown in Figure 8.7. A zoomed out
version is shown in Figure 8.8. This is why it is best to give a little overhead
when choosing the sample rate to use on a signal. If that is done, it yields
Figure 8.9 where the sampling rate is just a little over the frequency of the
sine wave.

In order to make sure that the signal never has too high frequencies, a
circuit designer will typically have a low pass filter just before the input to
the ADC.

https://en.wikipedia.org/wiki/Nyquist_frequency

CHAPTER 8. SAMPLING AND DATA COLLECTION 57

0 1 2 3 4 5 6
Time (s)

−3

−2

−1

0

1

2

3

Si
gn

al
 M

ag
ni
tu
de

 (a
rb
itr

ar
y)

Analog
Quanti ed
Error

Figure 8.2: This shows amplitude quantization and the resulting error.

8.3 ADCs
Analog-to-digital converters (ADCs) are the piece of equipment that samples
and quantizes a real signal. They have a set bit width. For instance a 10-
bit ADC returns quantized values between 0 and 1023. Setting the sample
rate can be done different ways depending on what the hardware capabilities
are. Some ADCs take care of the sampling timing while others require the
microcontroller to send a start conversion signal every time a new sample
needs to be taken.

Once a sample is collected, it is often useful to convert it back into the
voltage from the ADC count returned to the microcontroller. Equation 8.1
shows how this is done. The reference voltage is set somewhere in the system.
It is a carefully constructed power supply to have as little noise as possible. In

CHAPTER 8. SAMPLING AND DATA COLLECTION 58

0 1 2 3 4 5 6
Time (s)

−3

−2

−1

0

1

2

3

Si
gn

al
 M
ag

ni
tu
de

 (a
rb
itr
ar
y)

Analog
Random Samples

Figure 8.3: This shows random sampling.

the case of the Arduino Nano Connect RP2040, the onboard ADC reference is
3.3 V. The onboard ADCs are also 10-bit, so if an ADC reads 400 the applied
voltage is 1.29 volts as shown in Equation 8.2. It can also be useful to know
how many volts each count of the ADC is. This is shown in Equation 8.3
which gives 3.222 mV per count on the Nano’s ADC.

voltage =

(
ADCcount

maxADCcount

)
referenceVoltage (8.1)

voltage =

(
400

1023

)
3.3 = 1.29V (8.2)

volts/count =
referenceV oltage

totalADCCounts
=

3.3

1024
= 3.222mV/count (8.3)

CHAPTER 8. SAMPLING AND DATA COLLECTION 59

0 1 2 3 4 5 6
Time (s)

−3

−2

−1

0

1

2

3

Si
gn

al
 M
ag

ni
tu
de

 (a
rb
itr
ar
)

Analog
Even Samples

Figure 8.4: This shows even sampling.

8.4 Data Collection

8.4.1 Why Do We Collect Data?

One reason we collect data is to document something. It is important to
record what has happened. One example of this is weather data that has
been collected for centuries. This documentation then allows for analysis
(another reason to collect data). Analysis of weather data over time led to

8.4.2 How Can We Tell If Data is Good?

8.4.3 Examples

CHAPTER 8. SAMPLING AND DATA COLLECTION 60

0 1 2 3 4 5 6
Time (s)

−3

−2

−1

0

1

2

3

Si
gn

al
 M

ag
ni
tu
de

 (a
rb
itr

ar
y)

Analog
Sampled and Quanti ed

Figure 8.5: This shows a sampled and quantized signal.

CHAPTER 8. SAMPLING AND DATA COLLECTION 61

0 1 2 3 4 5 6
Time (s)

−3

−2

−1

0

1

2

3

Si
gn

al
 M

ag
ni
tu
de

 (a
rb
itr

ar
y)

Analog
Sampled and Quanti ed

Figure 8.6: This is the best case when sampling at the Nyquist rate.

CHAPTER 8. SAMPLING AND DATA COLLECTION 62

0 1 2 3 4 5 6
Time (s)

−3

−2

−1

0

1

2

3

Si
gn

al
 M

ag
ni
tu
de

 (a
rb
itr

ar
y)

Analog
Sampled and Quanti ed

Figure 8.7: This is the worst case when sampling at exactly the Nyquist rate.

CHAPTER 8. SAMPLING AND DATA COLLECTION 63

0 5 10 15 20 25 30 35
Time (s)

−3

−2

−1

0

1

2

3

Si
gn

al
 M
ag

ni
tu
de

 (a
rb
itr
ar
y)

Analog
Sampled and Quantized

Figure 8.8: This is a zoomed out view of the worst case of sampling at exactly
the Nyquist rate.

CHAPTER 8. SAMPLING AND DATA COLLECTION 64

0 5 10 15 20 25 30 35
Time (s)

−3

−2

−1

0

1

2

3

Si
gn

al
 M
ag

ni
tu
de

 (a
rb
itr
ar
y)

Analog
Sampled and Quantized

Figure 8.9: This is a zoomed out view of sampling just faster than the Nyquist
rate.

Chapter 9

Inertial Measurements

9.1 Introduction
This chapter introduces students to using collecting inertial data such as
linear and angular acceleration.

9.2 Rectilinear Kinematics
Rectilinear kinematics is about motion along a straight line. This provides a
good starting point for discussing the mathematics of inertial measurements.

Time, position, velocity, and acceleration have the following differential
relationships:

a =
dv

dt
(9.1a)

v =
ds

dt
(9.1b)

a ds =v dv (9.1c)

If the acceleration is known (or can be assumed to be) constant, Equations
9.1 can be integrated to give Equations 9.2.

v =v0 + act (9.2a)
s =s0 + v0t+ 0.5act

2 (9.2b)
v2 =v20 + 2ac(s− s0) (9.2c)

65

CHAPTER 9. INERTIAL MEASUREMENTS 66

Constant acceleration is usually applied to the kinematics of projectiles
where the constant acceleration is due to gravity. In the case of a digital
IMU, the acceleration measurement is reported periodically (at 104 Hz in
the default case of the LSM6DSOXTR on the Nano RP2040 Connect). Since
it is a sampled system, we cannot just integrate Equations 9.1 to get velocity
and position. What we do instead is to assume constant acceleration between
samples and run a cumulative sum to calculate the velocity and position.

Integrating also assumes the knowledge of initial conditions. Usually we
start with an initial condition of being at rest. This simplifies our starting
point. At each subsequent calculation, the output of the previous sample is
taken as the initial condition. This is shown in Equations 9.3.

v[k] =v[k − 1] + a[k − 1]∆t (9.3a)
s[k] =s[k − 1] + v[k − 1]∆t+ 0.5a[k − 1](∆t)2 (9.3b)

As will become quite clear, this provides a noisy output with drift due
to the two numeric integrations. There are several options for cleaning it
up. One is to use trapezoidal rather than rectangular numeric integration.
Another is to add some form of filtering to reduce the drift. Some options are
a high pass filter on the acceleration and/or the velocity, Kalman filtering,
or optimization techniques. A paper showing several of these techniques is
Using Inertial Sensors for Position and Orientation Estimation.

9.3 Angle Measurement
Since earth’s gravity provides a constant acceleration, detecting that constant
allows a measurement of the angle between a device and it to determine the
angle between. That is the basis for measuring the angle of a device using
accelerometers. Since gyroscopes measure the rate of rotation, summing this
angular speed over time will also give an estimate of angle. First, we will
go over the basics of accelerometer angle measurement, then gyroscope angle
measurement, and lastly, how to combine both measurements to correct the
error each is prone to.

https://arxiv.org/pdf/1704.06053.pdf

CHAPTER 9. INERTIAL MEASUREMENTS 67

x

z

ax

az

1g

θ

Figure 9.1: This shows the relative intensities of the accelerometer x and z
(ax and az respectively) measurements to the earth’s gravity from the sensor
frame of reference.

9.3.1 Accelerometer Angles

The problem is illustrated in Figure 9.1. In this case, we will take the x-axis
as the horizontal axis and the z-axis is the vertical. We will assume that there
are no external forces applied besides the force of gravity. This is faulty if the
device is translating or otherwise not rotating about the IMU. However, we
can still get some useful information even with this assumption. The vector
sum of ax and az add to a point on the unit (1 g) circle. Therefore, the angle
can be calculated as shown in Equation 9.4.

θa = tan−1

(
ax
az

)
= atan 2(ax, az) (9.4)

The atan2 function is provided in most languages. It is a “safe” version
of tan−1 that deals with zeros and signs of ax and az correctly and cleanly.
If the language you are using has it (which it does) then use it to prevent
calculation problems. Note that Equation 9.4 is not time dependant and does
not have any numerical integration. It provides a ground truth of the angle
based on the assumptions at the beginning: no forces other than gravity and

CHAPTER 9. INERTIAL MEASUREMENTS 68

no noise. Unfortunately, the output tends to have high frequency noise so
you usually want to run the output through a low-pass filter.

9.3.2 Gyroscope Angles

Gyroscopes output angular velocity, ω, which when integrated can give the
current angle relative to the starting angle. Since this system is sampled,
instead of integration use a cumulative sum where each data point is based
on the previous one. Equation 9.5 shows the mathematical approximation of
the current angle based on the derivative of the angle θ with respect to time.
This derivative is ω that is output by the gyroscope.

θ(t+∆t) ≈ θ(t) +
∂

∂t
θ(t)∆t (9.5)

The actual implementation of Equation 9.5 is shown in Equation 9.6.

θg[t] = θg[t− 1] + ω∆t (9.6)

Since this calculation is based on integration it is susceptible to drift. The
error in the output will increase over time. A way to fix this is to run the
output through a high pass filter to block the low frequency drift.

9.3.3 Fusing Accelerometer and Gyroscope Angles

The errors in accelerometer angle measurement are complementary to those
in the gyroscope angle estimates since the acceleration estimates need a low
pass filter and the gyroscope estimates need a high pass filter. If the values
are combined carefully we can take advantage of the best properties of both
measurements and use them to correct the errors in the other measurements.
A complementary filter as shown in Equation 9.7 works well for this.

θmixed[t] = α (θmixed[t− 1] + ωgyro∆t) + (1− α) atan 2(ax, az) (9.7)

As can be seen, if α = 0, Equation 9.7 reduces to the accelerometer angle
measurement and if α = 1 it reduces to the gyroscope angle measurement.
Choosing an α value between 0 and 1 gives a mixture of both results. Also,
remember that the θ on the right side of Equation 9.7 is the previously
calculated mixed θ, not the output from a separately calculated gyroscope

CHAPTER 9. INERTIAL MEASUREMENTS 69

angle as one might be tempted to do. Choose α through tuning (guided
trial and error) based on the specific system that is being implemented and
problem needing to be solved. In one example, I found a value of α = 0.95
worked well.

It is very important to keep the units from each function correct. The
gyroscopes on the Arduino Nano Connect RP2040 output in degrees per
second. The inverse tangent functions typically return values in radians.

9.4 Useful References
1. Arduino constants https://forum.arduino.cc/t/pi-in-arduino/173649/3

2. https://stanford.edu/class/ee267/lectures/lecture9.pdf

3. https://stanford.edu/class/ee267/lectures/lecture10.pdf

4. https://stanford.edu/class/ee267/notes/ee267_notes_imu.pdf

5. ST Micro gravity subtraction

https://forum.arduino.cc/t/pi-in-arduino/173649/3
https://stanford.edu/class/ee267/lectures/lecture9.pdf
https://stanford.edu/class/ee267/lectures/lecture10.pdf
https://stanford.edu/class/ee267/notes/ee267_notes_imu.pdf
https://www.st.com/resource/en/design_tip/dt0106-residual-linear-acceleration-by-gravity-subtraction-to-enable-deadreckoning-stmicroelectronics.pdf

Chapter 10

Pulse Width Modulation

10.1 Introduction
This chapter introduces students to using Pulse Width Modulation (PWM)
to control LED intensity and servo position.

10.2 References
1. PWM Tutorial (Circuit Digest)

70

https://circuitdigest.com/tutorial/what-is-pwm-pulse-width-modulation

Chapter 11

DC Motors and Control

11.1 Introduction
This chapter introduces students to types of DC motors and controlling DC
motors using H-bridge type devices.

11.2 Types of DC Motors
The types of DC motors relevant to this class are as follows:

1. Brushed

(a) DC

(b) Hobby Servos

2. Brushless

3. Stepper

11.2.1 Brushed DC

Brushed DC motors are very common. The haptic motors that make your
phone vibrate are likely brushed DC motors. The motors in most toys are
also brushed DC motors. They are cheap to make and easy to use so they
are very common. The direction of rotation is controlled by changing the po-
larity of the applied voltage. The speed of rotation is controlled by varying

71

CHAPTER 11. DC MOTORS AND CONTROL 72

the magnitude of the applied voltage. The torque of a brushed DC motor in-
creases with rotational speed. The advantages and disadvantages of brushed
DC motors is outlined in Table 11.1.

Advantages Disadvantages
Inexpensive Mechanical noise from brushes
Lightweight Electrical noise from brushes
Reasonably efficient

Table 11.1: Advantages and disadvantages of brushed DC motors.

The brushes on brushed DC motors change which coil in the rotor is
activated as the rotor rotates such that the rotor is always pushing away
from the permanent magnets in the stator. The brushes transfer the current
from the stator to the rotor by having electrical brushes contacting metal
patches on the rotor.

11.2.2 Hobby Servos

11.2.3 Brushless DC Motors

Brushless DC motors have the coils in the stator and the permanent magnets
on the rotor. The coils are activated in sequence to keep the rotor spinning.
An electronic speed controller (ESC) controls the coil activation to keep the
motor spinning at the desired rate. Some ESCs make use of a sensor on the
motor to tell which coil needs activating to keep the motor spinning. Sen-
sorless ESCs (common in the hobby market) measure the back emf (voltage
across each coil) to know when to activate each coil.

It is important to choose a good quality ESC that is rated sufficiently to
drive the motor. I have had a couple catastrophic failures of ESCs in flight.
Fortunately, they were on fixed wing drones with good pilots so there was no
other loss of payload/aircraft.

Brushless DC motors are used all around as well in things like computer
fans, hard drive platter spinners, drones, and hybrid vehicles. The advantages
and disadvantages of brushless DC motors are outlined in Table 11.2.

CHAPTER 11. DC MOTORS AND CONTROL 73

Advantages Disadvantages
Quiet Usually require separate ESC
Efficient

Table 11.2: Advantages and disadvantages of brushless DC motors.

11.2.4 Stepper Motors

Stepper motors move one step at a time which makes them very useful in
situations where fine motion control is needed. Position control is possible
without any feedback mechanism when using stepper motors. However, if the
motor is under too large a load, it may skip a step and position estimation
will be off. Stepper motors have highest torque at low speed with torque
dropping as speed increases. They require at least two H-bridges to drive.

11.3 References
1. Adafruit Motor Selection Guide

2. SparkFun Servo Tutorial

3. Arduino Servo Library

4. TI Stepper Motor Reference

https://learn.adafruit.com/adafruit-motor-selection-guide?view=all
https://learn.sparkfun.com/tutorials/hobby-servo-tutorial/all
https://www.arduino.cc/reference/en/libraries/servo/
https://www.ti.com/lit/an/slva767a/slva767a.pdf

Chapter 12

Deriving Information from Data

12.1 Introduction
This chapter introduces students to deriving useful information from raw
data streams.

12.2 Collecting Good Data
Data collection is an important part of all of our lives. Everywhere we look,
our eyes provide us with data. Our ears and nose also provide lots of data
to our brains. However, it is important to realize why we might have a
microcontroller collect data. Three reasons that come to mind are:

1. Documentation - to record for posterity of some kind (e.g. world speed
records)

2. Actionable - do something based on the data (e.g. thermostat)

3. Analysis - better understanding of our world (e.g. climate research)

One big problem in life is to know whether the data we are collecting is
good. Here are some ways to check data to determine if it is worth looking
at:

1. Consistency

2. Comparison to ground truth

74

CHAPTER 12. DERIVING INFORMATION FROM DATA 75

3. Repeatability

4. Multiple sensors

5. Common sense

12.2.1 Ground Truth

One very good method of checking data is to compare to something that is
more accurate than what you are using. For instance, if you are using a ther-
mometer that is accurate to ±2◦C, compare it to a calibrated thermometer
that is accurate to ±0.5◦C. The calibration is important since it means that
the more accurate thermometer has been tested against another thermome-
ter that is even more accurate that itself. Most test equipment needs regular
calibration and gets a tag of some kind on it when it does get calibrated.
Check that tag before using it.

12.2.2 Repeatability

If it is possible to repeat a data collection multiple times, comparing results
will give some idea of whether the data is good. The standard deviation is
one statistic that can give a useful estimate of how repeatable an experiment
is. If the standard deviation is high (defining “high" is important), than the
data source probably is suspect.

12.2.3 Multiple Sensors (sources)

Another good way to check is to have multiple sources of the same infor-
mation. If all three thermometers give the same result (within their error
margins), then the data is more believable than just one thermometer. The
shuttle ran with 5 computers with the general idea that there would be a
vote between them in hopes that the majority would be correct. Sometimes
it can be useful to have multiple sensors measuring the same thing but dif-
ferent ways. This can lead credence to the overall result.

12.2.4 Common Sense

Lastly, it is important to check all measurements with a great deal of common
sense. If it doesn’t feel cold to you and the thermometer says it is 0 degrees,

CHAPTER 12. DERIVING INFORMATION FROM DATA 76

then you should suspect the thermometer is wrong.

12.2.5 Data Collection Review

Check your data!

1. How much do you trust your source?

2. Does the data fit prior knowledge?

3. Does it make sense? (Sanity check)

12.3 Sample Timing
It is important to sample data at regular intervals. Jitter in sample timing
can ruin the math of data analysis. The question is, how do we make sure
that we are sampling at an even, regular interval? The simplest and most
obvious method is shown in Listing 12.1. This method might work for data
that is sampled at a very slow rate–less than once a second.

void loop()
{

static uint32_t currTime;
currTime = millis();

if(currTime − lastSampleTime >= sampleInterval) {
doSampling();
lastToggle = currTime;

}
}

Listing 12.1: This listing shows a simplistic way to time sampling.

However, that the reality is more like what is shown in Listing 12.2.
There are often processes running during the loop that introduce jitter into
the sampling period.

void loop()
{

static uint32_t currTime;
currTime = millis();

CHAPTER 12. DERIVING INFORMATION FROM DATA 77

if(currTime − lastSampleTime >= sampleInterval) {
doSampling();
SOMETHING_SLOW();
lastToggle = currTime;

}
SOMETHING_ELSE_OCCASIONALLY_SLOW();

}

Listing 12.2: The problem with the simplistic approach is slow processes that
introduce jitter.

So what is the solution? Interrupts!

12.3.1 Interrupts

Interrupts are as they sound: Normal code execution stops and the processor
switches to a short piece of code called an Interrupt Service Routine (ISR
or Interrupt Handler). Once the ISR finishes, code execution resumes where
it had been interrupted. Interrupts can be triggered at specific repeatable
times from onboard timers. They can also be triggered by other events. The
thermometer on the board and the distance sensor can both be setup to
trigger interrupts.

ISRs must be short. They cannot even have Serial.println() calls
inside them. They typically do something like change a count, set a flag,
toggle a value, start data collection (e.g. on an ADC), or read a value (e.g.
also an ADC). If an ISR is too long regular code execution isn’t resumed
properly and the processor may reset and start over. This can be triggered
by a watchdog timer.

12.3.2 Volatile Variables

It is important to designate any global variables that are changed by an
ISR as volatile. This designation tells the compiler not to optimize the
variable out. This would normally happen since the compiler does not see
the ISR called anywhere in the code. An example of doing this is shown in
Listing 12.3

volatile overtemp_flag = false;
void loop() {

CHAPTER 12. DERIVING INFORMATION FROM DATA 78

if(overtemp_flag) {
overtemp_flag = false;
// do something about being too warm

}
}

interrupt void temp_isr() {
overtemp_flag = true;

}

Listing 12.3: This code illustrates using volatile for variables used in ISRs.

12.4 Static Variables
The second useful variable declaration when using interrupts (but is also
useful elsewhere) is static. The static declaration allows variables inside
a function to persist between function calls, but keeps their scope inside
the function. Listing 12.4 demonstrates this with the variable named cnt
inside the function count_int. The first time count_int is called cnt
is initialized to a value of 0. Then it is incremented to 1. The second time
count_int is called cnt has a value of 1 even though without the static
declaration it would have a value of 0 every time the function was called.

int count_int() {
static int cnt = 0;
return(cnt++);

}

void loop() {
Serial.println(count_int()); // prints 0
Serial.println(count_int()); // prints 1

}

Listing 12.4: This code demonstrates the functionality of a static variable.

CHAPTER 12. DERIVING INFORMATION FROM DATA 79

12.5 Extrema Detection
I have found that I have often needed to find the peaks and valleys (the ex-
trema) of a signal. When working on a computer Python (scipy.signal.find_peaks)
and Matlab both have good algorithms for peak (valley) detection. When
working on a microcontroller there are also libraries but it is important to
understand what it is that you are looking for. Keep in mind that in an
embedded (microcontroller) system we are usually processing data in real
time and therefore need algorithms that work on live data coming in AND
that do not take more processing power than is available between sample col-
lections. Also, since the data is coming in continuously, a simple maximum
measurement or minimum will not work since we do not have all the data.

Some data has a flat baseline with only positive peaks as shown in Fig-
ure 12.1 of humidity sensor data. The temperature data shown in Figure 12.2
shows a drifting baseline and also positive peaks. Figure 12.3 shows temper-
ature and humidity together for the same time period.

20 40 60 80 100 120
Time (s)

15

20

25

30

35

40

Hu
m
id
ity

 (%
)

Figure 12.1: Humidity measurements like this (with a human blowing on the
sensor) demonstrate positive peaks coming from a fairly stable baseline.

CHAPTER 12. DERIVING INFORMATION FROM DATA 80

20 40 60 80 100 120
Time (s)

74

75

76

77

78

79
Te
m
pe

ra
tu
re
 (F

)

Figure 12.2: Temperature measurements like this (with a human blowing on
the sensor) demonstrate positive peaks coming from a drifting baseline.

Other data has a baseline with positive and negative deviations such as
the accelerometer data shown in Figure 12.4 Some algorithms are better for
one or the other or may work for both situations.

The data so far has had pretty quiet baselines. Oftentimes, data can be
much noisier as is illustrated in the light sensor data shown in Figure 12.5.

12.5.1 Thresholding

The simplest algorithm is a simple threshold system. This is used in most
thermostats. It is measuring the temperature and if it gets above the thresh-
old, it turns on the air conditioning. The threshold is now switched to a
lower value (to prevent oscillations) and it now looks for the temperature to
drop below the threshold. The first threshold required a positive derivative.
The second threshold required a negative derivative. These are important
distinctions.

Thresholding is simple to implement and can be useful in many situations.

CHAPTER 12. DERIVING INFORMATION FROM DATA 81

20 40 60 80 100 120
Time (s)

74

75

76

77

78

79
Te
m
pe

ra
tu
re
 (F

)

15

20

25

30

35

40

Hu
m
id
ity

 (%
)

Figure 12.3: This shows both temperature and humidity on the same graph.
Notice the different intensity of peaks between the two for the same events
and teh difference in times for the peaks for the same events.

Obstacle detection is another example where we only care if the object is
closer than some threshold. An example of a simple threshold valley detection
is shown in Figure 12.6. Note that this method gives lots of points for each
valley.

There is one more type of situation to think about. The potentiometer
data shown in Figure 12.7 is an example where the baseline of the data shifts
after an event.

12.5.2 Dispersion Method

To understand this version of extrema detection (and some others) a bit of
terminology needs to be understood. The first is the baseline of a signal.
This figure shows a signal that has a decreasing baseline. The baseline can
be thought of as where the signal is when no extrema is present. It is often
measured by some sort of low pass filter such as a moving average.

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-4/figures/2

CHAPTER 12. DERIVING INFORMATION FROM DATA 82

30 35 40 45 50
Time (s)

−1

0

1

2

3

4
Z
Ac

ce
le
ra
tio

n
(g
)

Figure 12.4: This accelerometer data demonstrates both positive and nega-
tive peaks from a baseline.

Once we determine the baseline of a signal, we can look for divergences
from the baseline. One way to measure that divergence is to measure how
many standard deviations away from the baseline a particular point lands.
We can then set a threshold of how many standard deviations away from the
baseline is considered an extrema.

For the dispersion/z-score method, the last parameter to look at is the
influence which is a value between 0 and 1. An influence of 0 means that
points that are considered extrema are not used in calculating the baseline.
This does assume that the mean and standard deviation of the signal do not
change over time. Since that is rarely, the case it is best to set the influence
to something greater than 0. An influence of 1 means that extrema points
influence the mean and standard deviation the same as all the other points.
That is also rarely a good idea since averages are particularly sensitive to
outliers and by definition, the extrema are outliers. A median filter or a
simple exponential filter might work better for some situations.

As with all algorithms, the parameters will have to be chosen and tuned

https://en.wikipedia.org/wiki/Exponential_smoothing

CHAPTER 12. DERIVING INFORMATION FROM DATA 83

20 40 60 80 100 120
Time (s)

100

200

300

400

500
M
ag

ni
tu
de

 (c
ou

nt
)

Light

Figure 12.5: This light sensor (CDS cell into ADC) is noisy as sensor data
can often be.

to work with the particular data you are measuring.

12.6 Bayes Theorem
A pattern classifier can be thought of as a set of functions, gi(x̄), called
discriminant functions. There is a discriminant function for each class, ωi,
that evaluates a particular set of data, x̄. The classification rule is then:
Assign x̄ to class ωi if

gi(x̄) > gj(x̄) for all j ̸= i (12.1)

A good and helpful option to explore for gi is called Bayes Theorem. The
formula for Bayes Theorem is shown in Equation 12.2.

P (ωi|x̄) =
p(x̄|ωi)P (ωi)

p(x̄)
(12.2)

where

CHAPTER 12. DERIVING INFORMATION FROM DATA 84

20 40 60 80 100 120
Time (s)

100

200

300

400

500
M
ag

ni
tu
de

 (c
ou

nt
)

Light
Extrema
Threshold

Figure 12.6: Looking for light values less than a threshold of 200 gives many
points for each valley in this data.

• x̄ is the data. If we are classifying faces is an image of a face

• ωi is class i, one of the possible identities of the face we are trying to
classify

• P (ωi|x̄) is the posterior probability–the probability of ωi given x̄. In
the example, it is the probability that the face image belongs to me
rather than someone else in the database.

• p(x̄|ωi) is the likelihood or state conditional probability density func-
tion. This is the probability that x̄ occurred given class ωi. For example
what is the probability of that the face image given that it is of me.
The likelihood is calculated based on collected data.

• P (ωi) is the prior probability of class ωi. Rolling a single 6 sided die
gives equal probability of each number so the priors are all 1/6. How-
ever, if instead we look at the sum of rolling 2 dice the probabilities of

CHAPTER 12. DERIVING INFORMATION FROM DATA 85

20 40 60 80 100 120
Time (s)

0

200

400

600

800

1000
M
ag

ni
tu
de

 (c
ou

nt
)

Potentiometer

Figure 12.7: This potentiometer data shows the situation where the baseline
shifts after an extrema event.

each number is no longer the same and the priors are different. The
priors are calculated from existing, collected data.

• p(x̄) is the evidence which is a scale factor to keep the probabilities
summing to 1 ∑

j

P (ωj|x̄) = 1 (12.3)

The evidence is calculated from existing, collected data as

p(x̄) =
∑
j

p(x̄|ωj)P (ωj) (12.4)

Discriminant functions are not unique. As long as f(·) is monotonically
increasing f(gi(x̄)) will work too. Therefore, all of the Equations 12.5 will
work.

CHAPTER 12. DERIVING INFORMATION FROM DATA 86

gi(x̂) =P (ωi|x̄) (12.5a)

=
p(x̂|ωi)P (ωi)∑
j p(x̂|ωj)P (ωj)

(12.5b)

=p(x̂|ωi)P (ωi) (12.5c)
= ln (p (x̂|ωi)) + ln (P (ωi)) (12.5d)

12.7 ML Metrics

12.7.1 Confusion Matrix

Predicted
A B C Total

A
ct

ua
l A 10 1 2 13

B 3 11 4 18
C 5 6 12 23

Total 18 18 18 54

Table 12.1: This shows what the rows and columns of a confusion matrix
mean.

10 1 2
3 11 4
5 6 12

 (12.6)

12.7.2 Accuracy

Accuracy =
#correct

#predictions
=

10 + 11 + 12

1 + 2 + 3 + 4 + 5 + 6 + 10 + 11 + 12
= 0.61

(12.7)

12.7.3 Precision

Precision is only calculated per class. Overall precision ends up as the same
as overall accuracy. Precision can be thought of as accuracy by column of a

CHAPTER 12. DERIVING INFORMATION FROM DATA 87

confusion matrix.

Precision =
#TruePositives

#TruePositives + #FalsePositives
(12.8)

For class A in the example (Table 12.1), the precision would be:

PrecA =
10

10 + 3 + 5
= 0.56 (12.9)

12.7.4 Recall

Recall is also only calculated per class because calculating it for everything
also degenerates to overall accuracy. Recall can be thought of as looking
along the rows of the confusion matrix.

Recall =
#TruePositives

#TruePositives + #FalseNegatives
(12.10)

For class A in the example (Table 12.1), the recall would be:

RecallA =
10

10 + 1 + 2
= 0.77 (12.11)

12.7.5 F1 Score

F1 score is the harmonic mean of precision and recall and therefore is also
only calculated on a per class basis.

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(12.12)

For class A in the example (Table 12.1), the F1 score would be:

F1A = 2

(
0.56 ∗ 0.77
0.56 + 0.77

)
= 0.65 (12.13)

12.7.6 References

1. This is a very good discussion of real-time peak detection algorithms
and examples

https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data

CHAPTER 12. DERIVING INFORMATION FROM DATA 88

2. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-
10-4

3. Very simple peak detector that just looks for points above a threshold

4. An Arduino library for dispersion method

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-4
https://forum.arduino.cc/t/detection-of-a-vibration-peak/423080/9
https://github.com/leandcesar/PeakDetection

Chapter 13

Control of Systems

13.1 Introduction
This chapter introduces students to some basic control strategies including
PID.

13.2 PID Control
The parallel (how we usually draw the controller) form of the PID equation
is shown in Equation 13.1.

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (13.1)

The standard form of the PID equation rearranges the gains so that they
have a more easily understood physical meaning as shown in Equation 13.2.

u(t) = Kp

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
d

dt
e(t)

)
(13.2)

In the standard form, Ti is the time it will take to eliminate all errors
assuming the loop control does not change. Td is how far into the future the
derivative term is trying to predict the error. Note that times in this context
can either be in seconds or samples. Samples is more typical in an actual
implementation.

89

CHAPTER 13. CONTROL OF SYSTEMS 90

13.2.1 Proportional Control

Sometimes just using the proportional term is enough for controlling a sys-
tem. The equation is shown in Equation 13.3.

u(t) = Kpe(t) (13.3)

13.2.2 Integral Control

It is a rare system that only requires integral control but the equation for
integral control is shown in Equation 13.4.

u(t) = Ki

∫ t

0

e(τ)dτ (13.4)

13.2.3 Differential Control

It is also rare that a system can be controlled satisfactorily with only differ-
ential control, but for completeness it is shown in Equation 13.5.

u(t) = Kd
d

dt
e(t) (13.5)

13.2.4 PI and PD Control

PI and PD control are sometimes sufficient to control a system satisfactorily.

Chapter 14

WiFI and Bluetooth

14.1 Introduction
This chapter introduces students to Wifi and Bluetooth.

14.2 Updating WiFiNINA Firmware
For the 1.8 versions of the Arduino IDE, the WiFiNINA firmware is bundled
with the IDE. This means that the IDE needs to be upgraded to get the
latest version of the firmware.

Once you have the most recent version of the IDE, follow the directions
here to upgrade the firmware.

91

https://support.arduino.cc/hc/en-us/articles/360013896579-Check-and-update-the-firmware-for-WiFiNINA-and-WiFi101

	Introduction
	Introduction
	License

	Number Systems
	Decimal Numbers
	Binary Numbers
	Hexadecimal Numbers
	Binary Background
	Converting Between Bases
	Binary to Decimal
	Decimal to Binary
	Binary and Hexadecimal

	Colors
	ASCII
	Adding and Subtracting Binary Numbers
	Default method
	Twos Complement method

	Gray Codes
	Binary Background

	Boolean Logic
	Introduction
	Methods of Representing Logic
	Boolean Algebra
	Theorems of Boolean Algebra

	Logic Gates and Truth Tables

	Arduino Startup
	Introduction
	Datasheets
	Arduino Nano Connect RP2040
	Circuit Board Parts (v0.5)

	Schematics and PCB

	I2C GPIO/Multiplexer
	Introduction
	Registers
	Registers 0 and 1 - Input Registers
	Registers 2 and 3 - Output Registers
	Registers 4 and 5 - Polarity Inversion Registers
	Registers 6 and 7 - Configuration Registers
	Pin mapping for Lab Robot

	Buttons and Serial Communications
	Introduction
	Buttons
	Serial Communications
	Universal Asynchronous Receiver-Transmitter
	Serial Peripheral Interface
	Inter-Integrated Circuit

	In Case of Upload Lock-up or Failure
	Arduino Programming Suggestions
	Arduino Button Setup
	Arduino Serial Setup

	Displays
	Introduction
	LCD
	eInk
	OLED

	Pixel Layout
	Using the Display
	Using Canvas to Reduce Flicker

	Sampling and Data Collection
	Introduction
	Sampling
	ADCs
	Data Collection
	Why Do We Collect Data?
	How Can We Tell If Data is Good?
	Examples

	Inertial Measurements
	Introduction
	Rectilinear Kinematics
	Angle Measurement
	Accelerometer Angles
	Gyroscope Angles
	Fusing Accelerometer and Gyroscope Angles

	Useful References

	Pulse Width Modulation
	Introduction
	References

	DC Motors and Control
	Introduction
	Types of DC Motors
	Brushed DC
	Hobby Servos
	Brushless DC Motors
	Stepper Motors

	References

	Deriving Information from Data
	Introduction
	Collecting Good Data
	Ground Truth
	Repeatability
	Multiple Sensors (sources)
	Common Sense
	Data Collection Review

	Sample Timing
	Interrupts
	Volatile Variables

	Static Variables
	Extrema Detection
	Thresholding
	Dispersion Method

	Bayes Theorem
	ML Metrics
	Confusion Matrix
	Accuracy
	Precision
	Recall
	F1 Score
	References

	Control of Systems
	Introduction
	PID Control
	Proportional Control
	Integral Control
	Differential Control
	PI and PD Control

	WiFI and Bluetooth
	Introduction
	Updating WiFiNINA Firmware

