
Fundamentals of Applied Microcontrollers
Laboratory Manual

Seth McNeill

Edition Spring 2025 (v0.8)
2025 February 25

Contents

0 Introduction 5
0.1 License . 5

1 Arduino Startup 6
1.1 Installing the IDE . 6

1.1.1 Lab Computer . 6
1.1.2 Personal Computer . 6

1.2 Testing the Setup . 8
1.2.1 Installing the Board Drivers 8

1.3 USB Demos . 10
1.3.1 USB Keyboard . 10
1.3.2 USB Mouse . 11

1.4 Other examples . 11
1.5 Finishing Up . 11
1.6 Turn In . 12

2 Multiplexer, LED Display, Binary, HEX 13
2.1 Purpose . 13
2.2 Resources . 13
2.3 Procedure . 13

2.3.1 Add the PCA95x5 library 13
2.3.2 Turn on some LEDs 14
2.3.3 Count . 16
2.3.4 Extra credit: 2 pts . 16
2.3.5 Extra Credit Hints . 16

2.4 Turn In . 17

1

CONTENTS 2

3 Buttons and Serial (UART) 18
3.1 Purpose . 18

3.1.1 Serial Library . 18
3.1.2 Buttons . 22
3.1.3 Making Noise (buzzer) 24
3.1.4 NeoPixels . 24

3.2 Resources . 26
3.3 Procedure . 27
3.4 Debugging . 27
3.5 Turn In . 27

4 Displays 29
4.1 Purpose . 29
4.2 Procedure . 30

4.2.1 Main Requirements . 30
4.2.2 Extra Credit . 30

4.3 Turn In . 31
4.4 Resources . 31

5 Environmental Sensing 32
5.1 Purpose . 32
5.2 Procedure . 32

5.2.1 Overview . 32
5.2.2 Suggestions . 33
5.2.3 ADS7142 - TEMP0, POT, LIGHT1, LIGHT2 34
5.2.4 SHT31 Temperature and Humidity Sensor 34
5.2.5 QMC5883L Compass 35
5.2.6 LSM6DSOX IMU . 35
5.2.7 (Extra Credit) 1-Wire Sensors 35

5.3 Main Requirements . 36
5.4 Turn In . 36
5.5 Resources . 37

6 IMU 38
6.1 Purpose . 38

6.1.1 IMU Angle Measurement 38
6.2 Main Requirements . 38

6.2.1 IMU Screen Control 38

CONTENTS 3

6.2.2 Plotting IMU Data . 39
6.3 Procedure . 39
6.4 Extra Credit: 2 pts . 40
6.5 Turn In . 40
6.6 Resources . 40

7 Distance, Motor, Servo 41
7.1 Purpose . 41
7.2 Main Requirements . 41

7.2.1 Distance Calibration 41
7.2.2 DC Motors . 41
7.2.3 Servo . 42

7.3 Turn In . 42
7.4 Resources . 43

8 Peak Detection 44
8.1 Purpose . 44
8.2 Procedure . 44

8.2.1 Possible Sensors . 45
8.2.2 Example Reactions . 46

8.3 Turn In . 46
8.4 Resources . 46

9 Machine Learning 47
9.1 Purpose . 47
9.2 Laboratory . 47

9.2.1 Creating and Installing Voice Recognition 47
9.2.2 Adding Improvements 51

9.3 IMU Examples . 53
9.3.1 Download Examples 53
9.3.2 Install Library . 53
9.3.3 Running Examples . 53

9.4 Turn In . 55
9.5 Resources . 55

10 Controls 56
10.1 Purpose . 56
10.2 Laboratory . 56

CONTENTS 4

10.2.1 Getting started . 56
10.2.2 Proportional Control 57
10.2.3 Integral Control . 57
10.2.4 Derivative Control . 57
10.2.5 PID Calibration . 57
10.2.6 IMU PID Control . 57

10.3 Turn In . 58
10.4 Resources . 58

11 Wireless 59
11.1 Purpose . 59
11.2 Laboratory . 59

11.2.1 Preparation . 59
11.2.2 WiFi startup . 59
11.2.3 NFC . 60
11.2.4 UDP Between Boards 60
11.2.5 Bluetooth Low Energy 61
11.2.6 AJAX . 61

11.3 Shutdown . 62
11.4 Turn In . 62
11.5 Resources . 62

Chapter 0

Introduction

This book is the accompanying lab manual to a class introducing microcon-
trollers to upper division, non-electrical engineering undergraduate students
who have taken some C programming.

If you find this useful, please let me know. If you find any errors, areas
that need improvement, or have any improvements to add please let me know.

The class textbook/manual is here.

0.1 License
This code is released under a Creative Commons Attribution license. The
full text of the license is available at the following link.

https://creativecommons.org/licenses/by/4.0/
Users of this code should attribute the work to this project by displaying

a notice stating their product contains code and/or text from the Fundamen-
tals of Microcontrollers Project and/or linking to
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Laboratories.

5

https://github.com/semcneil/Fundamentals-of-Microcontrollers-Laboratories
https://creativecommons.org/licenses/by/4.0/

Chapter 1

Arduino Startup

1.1 Installing the IDE
We want to try using the IDE at least two different ways. First, on the lab
computer, then on your personal computers if you have them.

1.1.1 Lab Computer

1. On the search bar, type in Arduino. It should come up with Arduino
IDE.

2. Click on Arduino IDE

3. A script (DOS prompt) may appear for a bit.

4. After what could seem like a long time, the Arduino IDE should load.

5. It should load up with a window that looks like Figure 1.1.

6. You will likely be prompted to upgrade the IDE since the installed
software lags behind the latest version a bit. It shouldn’t matter if you
use the installed version and do not upgrade.

1.1.2 Personal Computer

1. Go to software download page: https://www.arduino.cc/en/software

6

https://www.arduino.cc/en/software

CHAPTER 1. ARDUINO STARTUP 7

Figure 1.1: This is what the Arduino IDE should look like when it loads.

2. Download the Windows ZIP file (not the first link or the app) for the
latest version (2.2.1 at this writing)

3. Open the zip file and copy the folder inside (arduino-2.2.1 as of this
writing) into your One Drive folder. This may take a while. If you are
on your own computer, you can use any of the programs.

4. Once that transfer finishes, go into the folder and run arduino.exe.
Windows will try to save you, but if you click More Info you can click
Run Anyway.

5. Windows Defender Firewall will also complain. Uncheck the box that
is checked and/or click Cancel.

6. It should load up with a window that looks like Figure 1.1.

If you want to use one of the other installation methods on your own computer
that should be fine too.

CHAPTER 1. ARDUINO STARTUP 8

1.2 Testing the Setup

1.2.1 Installing the Board Drivers

The board should already be correctly installed on the lab computers, but in
case it isn’t or you are setting up your own computer, here are the instructions
to install the board drivers.

1. In order to get it to connect correctly to your board, you need to install
the Arduino Nano Connect RP2040 board.

(a) Navigate to Tools→Board: “Arduino Uno" (or similar)→Boards
Manager

(b) It should load as shown in Figure 1.2.

Figure 1.2: This what the Boards Manager loads up to.

(c) In the search bar, type “arduino nano connect" (without the quotes)

(d) The first item should be Arduino Mbed OS Nano Boards and
should list the Arduino Nano RP2040 Connect.

(e) Move your cursor over it and it should show an Install button.
Click it to install the board library.

(f) Wait for it to finish.

CHAPTER 1. ARDUINO STARTUP 9

(g) While you are waiting, plug your Nano Connect into your com-
puter and let it install it.

(h) As it finished, I received a User Account Control warning asking
if I wanted to let dpinst-amd64.exe make changes to my device. I
said yes.

(i) Next it asked me if I wanted to install Arduino Universal Serial
Bus devices. Again, click to Install.

(j) It popped up again and I clicked Install again. Now it should say
that the Arduino Mbed OS Nano Boards has been installed.

(k) Close the Boards Manager.

1.2.1.1 Compiling, Uploading, and Running

This section can be done on either (or both) computers. The results from
one run (between both lab partners) is needs to be turned in.

1. Now go to Files→Examples→01.Basics→Blink.

2. This will open another window with the Blink program.

3. Go to Tools→Board→Arduino Mbed OS Nano Boards and select the
Arduino Nano RP2040 Connect

4. Go to Tools→Port and select the COM that isn’t COM1 (mine showed
up as COM5)

5. Click the right arrow in the top left of the window to Upload the sketch
to the Arduino board.

6. It should say “Compiling sketch..." in the lower right and show a progress
bar on the lower right.

7. Then it should switch to Uploading... and finally Done Uploading.

8. An orange light near the USB port on your board should be blinking.

9. Congratulations! You have programmed your board!

10. Now look in the program for the two delay statements. Try changing
the values inside the parentheses and re-uploading it. Does the blinking
change?

CHAPTER 1. ARDUINO STARTUP 10

11. In order to save files and have it portable, you need to change the
directory where the Arduino IDE stores it’s sketchbooks

(a) Go to File→Preferences

(b) Change the Sketchbook location to your OneDrive and a folder
named arduino (lowercase is good)

(c) My OneDrive was in
C:\Users\mcneils2\OneDrive - Embry-Riddle Aeronautical Uni-
versity\arduino

12. Now try saving the blink sketch with your changed values.

13. Demonstrate your working blink and it’s storage location to your in-
structor/TA

1.3 USB Demos
There are two USB demos to show for this lab as well–USB keyboard and
USB mouse.

1.3.1 USB Keyboard

1. Go to File→Examples→USBHID under Examples for the Arduino Nano
RP2040 Connect and choose Keyboard.

2. This example will type "Hello world" every second forever.

3. Modify this to say something pleasant and unique to your lab group

4. Modify it to only run once rather than repeated every second (hint:
setup vs loop function)

5. It should now only run once and you get it to run again by pressing
the reset button on the Nano Connect (the only button on the actual
module).

6. Demo this to the TA or instructor.

7. Have a look at the KeyboardModifiers example to think about doing
something other than just typing.

CHAPTER 1. ARDUINO STARTUP 11

8. As a thought exercise, could you program the board to advance Pow-
erPoint slides every 5 seconds?

1.3.2 USB Mouse

1. Go to File→Examples→USBHID under Examples for the Arduino Nano
RP2040 Connect and choose Mouse.

2. This demo moves the mouse arrow between two points around the
original location.

3. Customize the sketch for your lab group.

4. Demonstrate this to the TA or instructor.

1.4 Other examples
Here are some other Examples that might interest you:

1. Basics → fade: change the variable led to have the value LED_BUILTIN
, watch the red/orange LED pulse

2. Digital → DigitalInputPullup: Change the first pinMode call to use A0
instead of 2. The same for the digitalRead command (2→A0). Press
the right button (SW1) and see the LED blink. Note that this program
isn’t written as well as the others since you have to change a number
in two places. Could you rewrite it better?

1.5 Finishing Up
1. Create a sketch called getIDs using the code at

https://github.com/semcneil/CEC325Examples/blob/main/getIDs/getIDs.ino

2. You will need to install two libraries to make this script run.

(a) Go to Sketch→Include Library→Manage Libraries

(b) Install the ArduinoECCX08 and OneWire libraries

https://github.com/semcneil/CEC325Examples/blob/main/getIDs/getIDs.ino

CHAPTER 1. ARDUINO STARTUP 12

3. Run getIDs and submit the results in the end of lab Canvas quiz. The
results will be in the Serial Monitor which can be accessed through
Tools→Serial Monitor or the button in the top right of the IDE. It
should show 3 IDs for 1-Wire DS18B20s and one crypto serial number.
Don’t forget that getIDs requires two libraries:

(a) ArduinoECCX08

(b) OneWire current version

1.6 Turn In
1. Make sure that the TA or instructor has signed off on your modified

blink, keyboard, and mouse sketches.

2. Submit both a PDF and .ino of your edited keyboard.ino sketch. This
version of the IDE does not allow printing or saving as a PDF, so you
will need to copy the text out of the sketch into something like Word
and then save as PDF. Only one submission per group is required but
make sure that both your names are on the sketch.

3. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch. Both group members should
complete this quiz.

Chapter 2

Multiplexer, LED Display,
Binary, HEX

2.1 Purpose
The goal of this lab is to use binary and hexadecimal numbers in an applied
setting. This is achieved by having you (the student) use the Arduino Nano
Connect RP2040 to setup the PCA9535 I2C Input/Output (IO) port chip to
drive a 4-digit LED display.

2.2 Resources
1. PCA9535 datasheet

2. See schematics in the class manual for LED wiring.

3. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

2.3 Procedure

2.3.1 Add the PCA95x5 library

In Sketch → Include Library → Manage Libraries search for PCA9535 and
install the latest version of the one by hideakitai.

13

https://www.nxp.com/products/interfaces/ic-spi-i3c-interface-devices/general-purpose-i-o-gpio/16-bit-ic-bus-and-smbus-low-power-i-o-port-with-interrupt:PCA9535_PCA9535C
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

CHAPTER 2. MULTIPLEXER, LED DISPLAY, BINARY, HEX 14

2.3.2 Turn on some LEDs

An example script is shown in Listing 2.1. Use this as a starting point for your
code. Be sure to change the header information to include all lab partner
names and the correct date. This script displays an 8. in the first digit
and zeros in the rest. Note the clearing lines to make it so that there is not
ghosting of numbers to the right of where they are displayed. Remember that
we are using the PCA9535 chip which requires the PCA95x5 library. When
using a library the following steps must be followed or else the microcontroller
will probably crash or at least the part you are trying to use will not work.
Note the steps in Listing 2.1.

1. Include the library: #include <PCA95x5.h>

2. Create an object: PCA9535 LEDmux;

3. Initialize the object: usually a .begin() method (PCA9535 requires
more)

4. Use the object: LEDmux.write(0xFF0E);

Now to begin showing some numbers on the 7-segment display.

1. Run the script in Listing 2.1 to make sure it runs. Beware of copying
multiple lines from a PDF to the Arduino IDE since it often adds in
unwanted characters. Also, underscores (_) and some other symbols
sometimes fail to transfer correctly. The sketch is also available for
download from the class Canvas site.

2. Change the script so that it displays four consecutive numbers such as
1234. You can use any 4 consecutive, single digit numbers.

3. Demonstrate your sketch working to a TA or instructor.

/* 20220907LEDsClass1.ino

*
* Demo of LED display in class.

*
* Seth McNeill

* 2022 September 07

CHAPTER 2. MULTIPLEXER, LED DISPLAY, BINARY, HEX 15

*/

#include <PCA95x5.h> // include library

PCA9535 LEDmux; // create instance (object) of
library

void setup() {
Serial.begin(115200);
delay(3000);
Serial.println("Starting...");

// initialize object
Wire.begin(); // this must be done before LEDmux

.attach
LEDmux.attach(Wire, 0x21); // 0x21 is the I2C

address for the PCA9535 attached to the LEDs
LEDmux.polarity(PCA95x5::Polarity::ORIGINAL_ALL);
uint16_t mux_direction = 0x0010; // mostly

outputs (0), setting to 1 designates input
LEDmux.direction(mux_direction);

Serial.println("Everything setup");
}

void loop() {
int delayTime = 0;
// use object
LEDmux.write(0x000F); // required to remove

ghosting on other digits
LEDmux.write(0xFF0E);
delay(delayTime);
LEDmux.write(0x000F); // required to remove

ghosting on other digits
LEDmux.write(0x3F0D);
delay(delayTime);
LEDmux.write(0x000F); // required to remove

CHAPTER 2. MULTIPLEXER, LED DISPLAY, BINARY, HEX 16

ghosting on other digits
LEDmux.write(0x3F0B);
delay(delayTime);
LEDmux.write(0x000F); // required to remove

ghosting on other digits
LEDmux.write(0x3F07);
delay(delayTime);

}

Listing 2.1: This listing is a starting point for driving the LED display. This
sketch may also be available on Canvas. Beware of copying out of PDFs since
some characters (underscore for instance) come through garbled.

Note the anti-ghosting lines in Listing 2.1. This is because the two bytes
on the PCA9535 do not change simultaneously. One will change before the
other giving a slight showing of the previous number before showing the
new number. The fix is to turn off all four segments before writing the new
number.

2.3.3 Count

Make a new sketch, based off your first sketch (meaning copy and paste it
into the new sketch). This new sketch should count up from 0 to 9 (or
0000 to 0009) incrementing once per second. Demonstrate this counting to
a TA/instructor and get it signed off.

2.3.4 Extra credit: 2 pts

Have your counting system count in increments of 1 using more than one
digit (i.e. count from 00 to 99 if two digits). You must do the full count to
99, 999, or 9999, not just count to 10. It should reset (overflow) back to zero
and keep counting when it reaches the maximum.

2.3.5 Extra Credit Hints

1. Use the millis() function to update count every second. The fol-
lowing if statement shows an example of how to do this:
if(millis() − lastUpdate > updateInterval)
Be sure to update lastUpdate to the current value of millis()

CHAPTER 2. MULTIPLEXER, LED DISPLAY, BINARY, HEX 17

inside the if statement. lastUpdate should be of type unsigned
long and be declared as a static variable or in a global scope so

that it’s value persists between calls of the loop() function.

2. I used an array for the segments required for each number something
like
nums[] = {0xAB,0x1C,...} // values not correct

3. I also used an array to specify which digit is showing, something like
digs[] = {0x12, 0x0E,...} // values not correct

4. These can be combined since nums[ii] is the upper byte and digs
[jj] is the lower byte of the number that needs to be written to the
PCA9535. nums[ii] needs to be shifted to be the upper byte using
the << operator. For example:
(nums[ii] << 8) | digs[jj]

2.4 Turn In
Turn in the following:

1. Make sure that you have been signed off for both consecutive numbers
and counting.

2. A PDF of your first sketch that displays 4 consecutive numbers.

3. A PDF of your second sketch that counts.

4. .ino versions of both sketches.

5. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

Chapter 3

Buttons and Serial (UART)

3.1 Purpose
The goal of this lab is to gain a better understanding of the serial interface
between the board and the computer, get the buttons all working, and add
a few other fun interfaces.

Note that the most time consuming part of this lab in 2022 was getting
the non-SW1 switches working.

3.1.1 Serial Library

3.1.1.1 Initialization

So far we have used the Serial library without much explanation of how to
use it best. In the sketches we have used we just have used the two lines
shown in Listing 3.1 to start Serial.

Serial.begin(115200);
while(!Serial);

Listing 3.1: If serial is required for a sketch this method of starting Serial
blocks until a serial monitor is started.

However, if a serial connection to the computer is not required, the code
in Listing 3.1 prevents the rest of the sketch from executing. The Serial
library does take some time to start so a simple solution is to just delay for
a few seconds after calling Serial.begin() as shown in Listing 3.2.

18

CHAPTER 3. BUTTONS AND SERIAL (UART) 19

Serial.begin(115200);
delay(3000);

Listing 3.2: If serial is not required for a sketch this method of starting Serial
waits a bit in hopes it connects.

If you want to have the program quit waiting as soon as the Serial connects
but not delay forever like in Listing 3.1, you can keep checking for a serial
connection a fixed number of times as shown in Listing 3.2.

const int maxNoSerial = 300;
int noSerialCount = 0;
while(!Serial && noSerialCount < maxNoSerial) {

delay(10);
noSerialCount++;

}

Listing 3.3: This snippet tries connecting to Serial a fixed number of times
so that it will delay less than Listing 3.2 if a serial connection exists.

3.1.1.2 print vs println

If you want to print a string with an endline, use Serial.println().
This is handy for statements like Serial.println("Starting...").
However, if you want to print out the value of variables you often don’t want
newline at the end of the print. For this you use Serial.print(). Some
examples are shown in Listing 3.4.

Serial.print("Number of Names: ");
Serial.println(nNames);
...
Serial.print(F("You’re connected to the network,

IP = "));
Serial.println(WiFi.localIP());

Listing 3.4: This snippet shows using print and println

3.1.1.3 Reading data from the Serial

The serial connection goes both ways. Information can be sent from the com-
puter to your board. Listing 3.5 is an example of using input from the serial

CHAPTER 3. BUTTONS AND SERIAL (UART) 20

port. The call to Serial.available() tells the sketch whether or not
any characters have been received by the serial port. If characters have been
received by the serial port, Serial.read() reads them in one character at
a time. The switch function allows different responses depending on what
character is received.

Note the layout of the sketch. It is important to define the pins for
accessories so that they can be used later.

/* CEC325−SerialRcv.ino

*
* Demonstrates receiving and reacting to serial

* input.

* Uses the ERAU CEC325 board v0.3 which has an

* Arduino Nano RP2040 Connect on board.

*
* Seth McNeill

* 2022 February 09

* 2022 September 20 modified for v0.5 board

*
* This code in the public domain.

*/

#include <WiFiNINA.h> // for RGB LED

// pin definitions:
#define RIGHT_BUTTON_PIN A0
#define BUZZ_PIN 2 // buzzer

void setup() {
// initialize serial:
Serial.begin(115200);
delay(3000);
Serial.println("Starting...");

// make the pins outputs:
pinMode(LEDR, OUTPUT); // WiFiNINA RGB LED red
pinMode(LEDG, OUTPUT); // WiFiNINA RGB LED green

CHAPTER 3. BUTTONS AND SERIAL (UART) 21

pinMode(LEDB, OUTPUT); // WiFiNINA RGB LED blue
pinMode(RIGHT_BUTTON_PIN, INPUT);
pinMode(LED_BUILTIN, OUTPUT);
pinMode(BUZZ_PIN, OUTPUT); // buzz pin as output

}

void loop() {
while(Serial.available() > 0) {

// characters have been received
char inChar = Serial.read();
switch(inChar) {
case ’a’: digitalWrite(LED_BUILTIN,HIGH);

break;
case ’A’: digitalWrite(LED_BUILTIN,LOW);

break;
case ’b’: digitalWrite(LEDB, HIGH); break;
case ’r’: digitalWrite(LEDR, HIGH); break;
case ’g’: digitalWrite(LEDG, HIGH); break;
case ’+’: add(); break;
case ’o’: ledsOff(); break;
case ’z’: tone(BUZZ_PIN, 1000, 100); break;
case ’\n’: break;
default:

Serial.print("Unknown character: ");
Serial.println(inChar);

}
}

}

// turns off all 4 LEDs
void ledsOff() {

digitalWrite(LED_BUILTIN,LOW);
digitalWrite(LEDR,LOW);
digitalWrite(LEDG,LOW);
digitalWrite(LEDB,LOW);

}

// Adds characters received subsequent to +

CHAPTER 3. BUTTONS AND SERIAL (UART) 22

void add() {
Serial.println("Adding single digit numbers");
// subtract off value of ASCII 0
int a = Serial.read() − 48;
// subtract off value of ASCII 0
int b = Serial.read() − 48;
Serial.print(a);
Serial.print(’+’);
Serial.print(b);
Serial.print(’=’);
Serial.println(a+b);

}

Listing 3.5: This sketch shows controlling parts of the board using input
from the serial port. Remember, don’t copy and paste from a PDF since
that process garbles some of the characters.

3.1.2 Buttons

3.1.2.1 I/O Setup

To use general I/O pins on a processor in Arduino the pin has to be de-
fined as an input or an output. This is done in the setup() function
using the pinMode() function. It has the form of pinMode(pinNumber
, direction). The pinNumber is typically the number defined in the
Arduino specifications as D1 or A0. If it is a D1 type number, then just pass
the number to pinMode. If it is an A0 type number, you have to specify both
the letter and the number. So for the righthand button (SW1) on the v0.5
board that is attached to the A0 pin you would use pinMode(A0, INPUT)
since it is an input. The buzzer is attached to pin D2 so we would set it up
as pinMode(2, OUTPUT) since it is an output.

3.1.2.2 Reading and Writing Pins

Once the pinMode has been setup, you can read the value from an input
using the digitalRead(pinNum) function which takes a pin number as
an argument and returns a 0 or 1 (LOW or HIGH) depending on the read
value.

CHAPTER 3. BUTTONS AND SERIAL (UART) 23

To write a value to an output pin, use the digitalWrite(pinNum,
value) function. It also takes a pin number as an input along with whether
you want the output LOW or HIGH.

Since you will be using the pin number in multiple places, it is best to
define it with a name at the top of the program so that you can change it at
all places in your program by changing it once.

Examples of writing pins after setting their mode can be seen in List-
ing 3.5.

3.1.2.3 Other buttons

The v0.5 board has 4 buttons. SW1 is attached to A0 and can be read
directly using digitalRead. The other three buttons (SW2, FRONT_SW,
and BACK_SW) are connected to the PCA9535 I2C to GPIO chip with an
address of 0x20 and have to be accessed using the PCA95x5 library.

Remember to install the PCA95x5 library as follows: In Sketch → Include
Library → Manage Libraries search for PCA9535 and install the latest version
of the one by hideakitai.

1. Include the PCA95x5 library

2. Create a global variable of type PCA9535 named something like muxU31
(for the chip listed as U31 on the schematic)

3. Initialize the variable/object inside the setup() function:

(a) Start the wire library: Wire.begin()

(b) Attach to the mux using the attach method and correct address:
muxU31.attach(Wire, 0x20)

(c) Set the polarity: muxU31.polarity(PCA95x5::Polarity
::ORIGINAL_ALL)

(d) Set the direction: muxU31.direction(0x????) remembering
that a 1 is an input and a 0 is an output. Change the question
marks appropriately by looking at the schematics in the Class
Manual linked to in the Resources Section. Note that the only
outputs on U31 are Prox1EN and SHT31_RST all the other pins
are inputs. Set pins that are not connected as outputs too.

CHAPTER 3. BUTTONS AND SERIAL (UART) 24

4. Once the object is properly setup, read values with the read()method.
This returns a 16-bit number representing the 16 inputs on the chip.

5. A quick way to check if a bit is high is to bitwise AND (&) it with
a number where only the bit of interest is 1: mux31.read() & 0
x0004 reads the third input.

Note that switches SW1 and SW2 are are HIGH when not pressed and
LOW when pressed while FRONT_SW and BACK_SW are LOW when not
pressed and HIGH when pressed.

uint16_t muxVal = muxU31.read();
if(muxVal & 0x0001) {

// Do something with left button
}
if(muxVal & 0x0002) {

// Do something with another button
}

Listing 3.6: The buttons attached to the PCA9535 can be accessed as shown
in this code snippet.

3.1.3 Making Noise (buzzer)

The board for lab has a buzzer attached to pin D2. Arduino has a handy
function called tone(pin, frequency, duration). This is an easy
way to make your board beep. The duration is in milliseconds and the func-
tion blocks until the duration expires. Note that there is another version of
the function with the form tone(pin, frequency) that does not specify
a duration. This is a non-blocking way to make tones. It will continue to
make the tone until a call to noTone(pinNum) is called.

NOTE: If the tone function is all that is in a loop, it needs a short delay
(10 ms will do) after it to keep the Nano Connect RP2040 from crashing.

3.1.4 NeoPixels

The board has 18 multicolor LEDs around its periphery. These are called
NeoPixels by the Adafruit company. They get called other things by other
companies. They are all based on the WS2812 type chip. We will use the

CHAPTER 3. BUTTONS AND SERIAL (UART) 25

Adafruit NeoPixel library. Be sure to install it in the usual manner in the
Library Manager. It requires the usual:

1. #include the library

2. Initialize an object

3. Setup the library

4. Use the library

A minimal sketch to do all these is shown in Listing 3.7

/* NeoPixelSetup.ino

*
* A minimum sketch to setup NeoPixels.

*
* Seth McNeill

* 2022 September 20

*/

#include <Adafruit_NeoPixel.h> // NeoPixel library
// WARNING! NEO_PIN IS GPIO NOT D NUM for NeoPixel
#define NEO_PIN 17
#define NEO_COUNT 18 // number of NeoPixels

// Declare our NeoPixel strip object:
Adafruit_NeoPixel strip(NEO_COUNT, NEO_PIN, NEO_GRB
+ NEO_KHZ800);

void setup() {
Serial.begin(115200);
delay(3000);
Serial.println("Starting...");

// Setup NeoPixels
strip.begin();
strip.clear(); // Set all pixel values to zero
strip.show(); // Write values to the pixels

}

CHAPTER 3. BUTTONS AND SERIAL (UART) 26

void loop() {
for(int ii = 0; ii < NEO_COUNT; ii++) {
// set all the pixels to purple
// 255 is max brightness and is hard on the eyes
strip.setPixelColor(ii, strip.Color(120,0,120));
}
strip.show();
delay(1000);
// turn off all the LEDs
strip.clear();
strip.show();
delay(1000);

}

Listing 3.7: This snippet shows how to setup and run the NeoPixels on the
board.

3.2 Resources
1. Serial Library

2. digitalRead

3. tone

4. notone

5. Adafruit NeoPixel Library

6. PCA9535 datasheet

7. PCA9535 library (McNeill version)

8. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread/
https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
https://www.arduino.cc/reference/en/language/functions/advanced-io/notone/
https://www.arduino.cc/reference/en/libraries/adafruit-neopixel/
https://www.nxp.com/docs/en/data-sheet/PCA9535_PCA9535C.pdf
https://github.com/semcneil/PCA95x5
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

CHAPTER 3. BUTTONS AND SERIAL (UART) 27

3.3 Procedure
Write a single sketch with all the following functionality:

1. Reacts to all 4 buttons on the board in some way such as sound, light,
or Serial. THIS IS THE HARDEST PART. START HERE.

2. Reads in values from the serial port and does something in response.

3. Writes information to the serial port in response to some stimulus/s-
timuli.

4. Creates a tone in response to some stimulus.

5. Make the NeoPixels do something.

3.4 Debugging
Here are some pointers to help if your program gives errors:

1. Missing Wire.h: Make sure you are including the PCA95x5 library

2. Upload just gives a series of dots and says upload failed.

(a) Check to make sure the correct COM port is selected in Tools
menu

(b) Try pressing the reset button twice to put the RP2040 in upload
mode

(c) If nothing works, bring your board to the professor/TA to have a
hard reset performed

3. “Out of scope” errors. Count and match curly brackets ({}) to make
sure all your code is inside setup() or loop(). The only code that
can be outside of a function is a variable declaration (e.g. int x)

3.5 Turn In
Turn in the following:

CHAPTER 3. BUTTONS AND SERIAL (UART) 28

1. Make sure that the TA/Instructor signs off on your sketch demonstra-
tion.

2. A PDF of your sketch.

3. .ino versions of your sketch.

4. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

Chapter 4

Displays

4.1 Purpose
The goal of this lab is to learn to use the TFT display. Debouncing the
buttons so that an if statement only executes once per press takes the most
time.

int lastButtonVal = 1;

void loop() {
int curButtonVal = digitalRead(RIGHT_BUTTON_PIN);
if((lastButtonVal != curButtonVal) &&

!curButtonVal) {
// do something when button pressed

}
// very important this is outside
// the if and inside loop()
lastButtonVal = curButtonVal;

}

Listing 4.1: This is example code for debouncing a button.

There is code on Canvas that demonstrates some display capabilities, but
do NOT use the rButtonWait() function.

29

CHAPTER 4. DISPLAYS 30

4.2 Procedure

4.2.1 Main Requirements

Write a sketch with the following functionality:

1. Display a custom message for 3 seconds indicating the start of the
program when your program starts

2. Choose a favorite character and have it move left 10 pixels for each
press of the left button and right 10 pixels for each press of the right
button.

(a) Choose the Y value to be one that looks good to you

(b) If 10 pixels seems to not be a good value feel free to change it,
just note that you changed the value

(c) This builds on last week’s making all the buttons function

(d) Debounce the buttons so that each press only moves the character
once

(e) Add logic so that the character doesn’t go far off the edge of the
screen on either side.

3. Draw some (at least 3, but they don’t all have to be different) of the
drawing primitives (line, circle, rectangle, etc.)

4.2.2 Extra Credit

The following are extra credit options with increasing value:

1. Make the front and back switches move your character up and down
along with the left and right from the Main Requirements. (1 point)

2. Make an animation of some kind that lasts at least two seconds. (1 points)

3. Make a game that uses the buttons and the screen (2 points)

CHAPTER 4. DISPLAYS 31

4.3 Turn In
Turn in the following:

1. Make sure that the TA/Instructor signs off on your sketch demonstra-
tion.

2. A PDF of your sketch.

3. .ino versions of your sketch.

4. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

4.4 Resources
1. Adafruit 1.14" 240x135 Color TFT Display + MicroSD Card Breakout

- ST7789

2. Adafruit ST7789 library

3. Adafruit GFX library

4. See the chapter in the class manual about displays

5. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

https://www.adafruit.com/product/4383
https://www.adafruit.com/product/4383
https://www.arduino.cc/reference/en/libraries/adafruit-st7735-and-st7789-library/
https://learn.adafruit.com/adafruit-gfx-graphics-library
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

Chapter 5

Environmental Sensing

5.1 Purpose
The goal of this lab is to learn to collect data with an ADC and other sensors.

5.2 Procedure

5.2.1 Overview

Write a sketch with the following functionality:
Collect the following data and display it once a second via serial and on

the display with the appropriate labels and units if you can make them fit.

1. The output from millis() (ms)

2. Both light intensities as a number between 0 and 1023 (unitless)

3. Potentiometer value as a voltage between 0 and 3.3 V

4. Temperature in Fahrenheit from TEMP0 (U27 attached to input 0 of
U37)

5. Get SHT31 reporting temperature in F and humidity via Serial

6. Add SHT31 data to display

7. Get compass (QMC5883L) reporting azimuth via Serial

32

CHAPTER 5. ENVIRONMENTAL SENSING 33

8. Add azimuth data to the display

9. Get IMU (LSM6DSOX) reporting accelerations and gyroscope data via
Serial

10. Add accelerometer and gyroscope data to display

5.2.2 Suggestions

Use a String object to accumulate your display string and then call display
.println(yourString) to display it. Note a few things:

1. The String type starts with a capital S.

2. You can add to the String object using += or just +, but with only the
plus operator, all arguments have to be of the same type.

3. The String object also allows you to limit the number of decimal places
for float types. String(tF,1) displays tF to 1 decimal place.

An example is shown in Listing 5.1.

String dispStr;
dispStr = "T(F): ";
dispStr += String(tF,1);
dispStr += "\n";
// Control the display
tft.fillScreen(ST77XX_BLACK); // clear display
tft.setTextColor(ST77XX_YELLOW); // set text color
tft.setTextSize(1); // Normal 1:1 pixel scale
tft.setCursor(0,0); // Start at top−left corner
tft.println(dispStr);

Listing 5.1: This is an example of using a String object to display text and
float variables. The floats are limited to 1 decimal place such that 7.123
would be displayed as 7.1.

However, if you want to have different portions of the text in different colors
you will need to call tft.setTextColor between each tft.println.

https://www.arduino.cc/reference/en/language/variables/data-types/stringobject/

CHAPTER 5. ENVIRONMENTAL SENSING 34

5.2.3 ADS7142 - TEMP0, POT, LIGHT1, LIGHT2

The light sensors, potentiometer, and temperature sensor are connected to
ADS7142 analog-to-digital (ADC) sensors. Look for the ADS7142 library by
either Seth McNeill or Anitracks. Different versions of the IDE show different
names for the same library. After you install it, there should now be examples
under Anitracks ADS7142. Follow the read2Ch example combined with your
previous work to complete this lab. Note, that there are two ADS7142s on
the board and each has a different address and two inputs for a total of 4
inputs. Check the schematics in the class manual to know which address
goes to which inputs.

The light sensors are CdS light reactive resistors setup as resistor dividers.
They are located in the bottom left and right corners of the circuit board and
look like roundish gray with red lines on them. We tried putting mirrors over
some of them to try using them as distance sensors, but that didn’t work
well so many of the mirrors have broken off leaving some hot glue residue.

For converting to voltage, note that the ADS7142 is a 12-bit ADC but
returns values as 16-bit which means that the maxADCValue is 65535. The
reference voltage is 3.3 V.

As a contrast, if you read the voltage from A6 and A7 and use analogRead,
the maxADCValue is 1023 since they return 10-bit values and the reference
voltage is 1.1 V.

5.2.4 SHT31 Temperature and Humidity Sensor

Use Adafruit’s SHT31 library. Base your code on their example. Be sure to
make sure that the heater is off. For this class, you do not need to turn on
the heater.

Also, the SHT31 needs to be reset each time the program starts. It’s reset
pin is connected to a PCA9535. An example of how to do this is shown in
Listing 5.2.

Wire.begin();
muxU31.attach(Wire, 0x20);
muxU31.polarity(PCA95x5::Polarity::ORIGINAL_ALL);
muxU31.direction(0x1CFF); // 1 is input, see

schematic to get upper and lower bytes
muxU31.write(PCA95x5::Port::P10, PCA95x5::Level::L);

// disable SHT31

CHAPTER 5. ENVIRONMENTAL SENSING 35

delay(100);
muxU31.write(PCA95x5::Port::P10, PCA95x5::Level::H);

// enable SHT31
delay(100);

Serial.println("SHT31 test");
if (! sht31.begin(0x44)) { // Set to 0x45 for

alternate i2c addr
Serial.println("Couldn’t find SHT31");
while (1) delay(1);

}

Listing 5.2: This listing shows how to reset the SHT31.

5.2.5 QMC5883L Compass

Use the library by MPrograms for the QMC5883L compass. The azimuth
example should provide what you need to make it go.

5.2.6 LSM6DSOX IMU

Install the Arduino library for the LSM6DSOX IMU. Your program will
need to use a combination of the SimpleAccelerometer and SimpleGyroscope
examples. NOTE: This library returns acceleration in g’s not m/s2.

5.2.7 (Extra Credit) 1-Wire Sensors

Look through getIds and especially the print1WireIDs function to see
how to interface to the 1-Wire DS18B20 temperature sensors. I suggest mod-
ifying the print1WireIDs function to return the temperature of successive
sensors rather than just printing the ID and temperature out. Another op-
tion is to have it return a String with the temperatures listed and then
add the String to dispStr.

Start by just reading one DS1820 then after you have everything else
working, come back and add in the rest of the DS1820 sensors.

CHAPTER 5. ENVIRONMENTAL SENSING 36

5.3 Main Requirements
Write a sketch with the following functionality:

Collect the following data and display it once a second via serial and on
the display with the appropriate labels and units if you can make them fit.

1. The output from millis() (ms)

2. Both light intensities as a number between 0 and 1023 (unitless)

3. Potentiometer value as a voltage between 0 and 3.3 V

4. Temperature in Fahrenheit from TEMP0 (U27 attached to input 0 of
U37)

5. The temperature in Fahrenheit and humidity from the SHT31 sensor

6. The compass azimuth angle

7. The 3-axis accelerometer and gyroscope data (6 data points)

8. (Extra Credit) The temperatures from at least one 1-Wire DS18B20
sensor (can take about 1 second per sensor for acquisition). Do this
part last.

5.4 Turn In
Turn in the following:

1. Have either the TA or the instructor sign-off on your lab

2. A PDF of your sketch.

3. .ino versions of your sketch.

4. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

CHAPTER 5. ENVIRONMENTAL SENSING 37

5.5 Resources
1. Adafruit 1.14" 240x135 Color TFT Display + MicroSD Card Breakout

- ST7789

2. Adafruit ST7789 library

3. Adafruit GFX library

4. The SHT31 temperature and humidity sensor datasheet

5. The QMC5883L compass datasheet

6. The LSM6DSOX IMU datasheet

7. See the chapter in the class manual about displays

8. The DS18B20 temperature sensor datasheet

9. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

https://www.adafruit.com/product/4383
https://www.adafruit.com/product/4383
https://www.arduino.cc/reference/en/libraries/adafruit-st7735-and-st7789-library/
https://learn.adafruit.com/adafruit-gfx-graphics-library
https://sensirion.com/products/catalog/SHT31-DIS-B/
https://www.filipeflop.com/img/files/download/Datasheet-QMC5883L-1.0%20.pdf
https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual
https://cdn-shop.adafruit.com/datasheets/DS18B20.pdf
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

Chapter 6

IMU

6.1 Purpose
The goal of this lab is to learn to use the IMU data and the SD card.

6.1.1 IMU Angle Measurement

The user manual has the equations for calculating the current angle of the
IMU on one axis using a complementary filter to combine data from the
gyroscope and the accelerometers. The equation is copied here as Equation
6.1.

θmixed[t] = α (θmixed[t− 1] + ωgyro∆t) + (1− α) atan 2(ax, az) (6.1)

6.2 Main Requirements
Write two sketches with the following functionality:

6.2.1 IMU Screen Control

Use the angle measurement to move a character on the screen as described
in the Procedure section.

38

https://semcneil.github.io/Fundamentals-of-Microcontrollers-Manual/Fundamentals-of-Microcontrollers.pdf

CHAPTER 6. IMU 39

6.2.2 Plotting IMU Data

Save the IMU data as specified in the Procedure to the SD card, then plot
the saved data in Matlab or your other favorite plotting program.

6.3 Procedure
It is best to follow this outline to finish this lab most efficiently.

1. Start by making sure the IMU−CompFilterEx.ino example on Can-
vas works as it should for you.

2. Make it so that the angle controls the movement of a character on the
screen. You can use the ideas from the programs you and your partner
made for Lab 4.

(a) -180 degrees puts the symbol all the way to the right

(b) 0 puts the symbol in the middle of the screen

(c) +180 degrees puts the symbol all the way to the left

3. As the second part of the lab, load the example named SDReadWrite

4. Run it to make sure it works as advertised.

5. NOTE: File names have to be 8.3 – maximum of 8 characters before
the . and 3 after it.

6. Change it to save t (from curTime), ax, az, theta_g, theta_a, and
theta to the SD card

7. Delete the file reading operations and make sure that the first write
truncates and subsequent ones do not.

8. Notice what dt is now.

9. Make of plot of the data in Matlab, Python, or your other favorite
program for making good plots.

CHAPTER 6. IMU 40

6.4 Extra Credit: 2 pts
After you have completed all the lab requirements, make it so that the char-
acter on the screen moves up and down as well as left and right based on the
other axis of the PCB rotation.

6.5 Turn In
Turn in the following:

1. Have either the TA or the instructor sign-off on your lab

2. PDFs of your sketches and your plots of the IMU data.

3. .ino versions of your sketch.

4. The script/file you used to plot the data.

5. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

6.6 Resources
1. The LSM6DSOX IMU datasheet

2. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

Chapter 7

Distance, Motor, Servo

7.1 Purpose
The goal of this lab is to learn the distance sensor, driving DC motors, and
driving servo motors.

7.2 Main Requirements

7.2.1 Distance Calibration

Using an example sketch for the distance sensor, create a calibration curve
for the distance sensor out to it’s maximum sensing distance using the lid of
the shoebox as a target. The calibration curve should use at least 5 points
and have the readout (0-255ish) on the x-axis and actual, measured distance
on the y-axis. It is fastest to just print the distances out and then record
them onto another document rather than trying to save them off to the
SD card. Plot the calibration curve in your favorite data analysis software
(Python, Matlab, Excel, etc.). Use the Pololu library for the VL6180 sensor
and set SCALING to 1 for this part of the assignment. Set SCALING to 3
for everything else.

7.2.2 DC Motors

Write a sketch that drives your robot forward until the distance sensor senses
something (you choose a reasonable threshold), and then turns to avoid it

41

CHAPTER 7. DISTANCE, MOTOR, SERVO 42

and continues on. Remember that to drive the motors at different speeds,
you can just use analogWrite on one pin and set the other pin to 0
(analogWrite(0)). In order for the motor to actually spin, the number
passed to analogWrite needs to be greater than 50. The motor pins are
listed as AIN1, AIN2, BIN1, BIN2 which map to 0, 1, 8, and A2, respec-
tively, on the schematic. Do not mix analogWrite and digitalWrite
on the same pin in the same program.

Also, make sure that the motor jumpers are set to bat, not +5V. This
makes it so that the big power switch has to be in the ON position for the
motors to run. Be sure to switch it on when you want the motors running.

Lastly, be sure to do this with SCALING set to 3 so that the detection
distance can be longer.

7.2.3 Servo

Write a sketch where the distance is measured every 10 degrees of servo
movement. Plot the data on the robot’s TFT display. The plot can either be
cartesian, with the x-axis as angle from 0 to 180 and the y-axis the distance
measured at the angle, or it can be a polar plot with the angle being theta,
and the distance as the radius. The Servo library is already installed and
not far down in the Examples. Look at the Sweep example to get started. If
the sweep example does not run, add a delay of 3000 ms at the beginning of
setup().

Make sure that you orient the display so that the closer distances are
displayed toward the bottom of the screen and the further ones are towards
the top. The top is defined as the side closest to the distance sensor. Also,
display a whole scan before clearing the screen.

7.3 Turn In
Turn in the following:

1. Have either the TA or the instructor sign-off on your lab

2. A PDF of your sketches.

3. .ino versions of your sketches.

4. The script/file you used to plot the data.

CHAPTER 7. DISTANCE, MOTOR, SERVO 43

5. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

7.4 Resources
1. VL6180 Distance sensor

2. TMI8837 Motor controller

3. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

https://www.st.com/resource/en/datasheet/vl6180.pdf
https://datasheet.lcsc.com/lcsc/2001060933_TMI-TMI8837_C478955.pdf
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

Chapter 8

Peak Detection

8.1 Purpose
The goal of this lab is to experiment with extrema detection by creating a
sketch that has the following two parts:

1. Detect peaks/valleys in data

2. Do something when extrema are detected

8.2 Procedure
1. Install the PeakDetection library from:

https://github.com/leandcesar/PeakDetection

2. Click on the green Code button and select Download ZIP

3. On the Arduino IDE click Sketch → Include Library → Add ZIP Li-
brary

4. The example uses input from A0, which is attached to SW1 on your
board. This should work for initial testing that the code runs.

5. There is an example posted on Canvas that uses the potentiometer on
your board, download and make sure this example runs too.

6. Choose which sensor you plan to use (not SW1 or the potentiometer)

44

https://github.com/leandcesar/PeakDetection

CHAPTER 8. PEAK DETECTION 45

7. Choose how you want the board to react to positive and negative ex-
trema

(a) NOTE: Your board must respond to a peak/valley (extrema), not
just a threshold situation.

(b) For example, if you are using a distance sensor, it must react to
something coming closer and then getting further away. It cannot
just react to something getting closer like we did in the Distance,
Motor, Servo lab.

(c) Your board must respond differently to a positive extrema (peak
== 1) than a negative extrema (peak == -1).

(d) We will be checking for the adaptation of your program to chang-
ing baselines.

8. Implement your choices of sensor and reactions

9. Complete what is required to turn in

8.2.1 Possible Sensors

1. IMU (accelerometer and/or gyroscope)

(a) React to waving board

(b) React to tipping board

(c) React to impacts

2. Proximity (look for peak, not threshold situation)

3. Light

4. Temperature

5. Humidity

6. Compass

CHAPTER 8. PEAK DETECTION 46

8.2.2 Example Reactions

You can probably come up with more ideas for reactions.

1. Run buzzer with different tones

2. Move servo

3. Change motor speed/direction

4. Change NeoPixels

5. Change LED display

6. Display relevant data on the TFT display

8.3 Turn In
Turn in the following:

1. Have either the TA or the instructor sign-off on your lab

2. A PDF of your sketch.

3. .ino versions of your sketch.

4. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

8.4 Resources
1. StackOverflow post about this algorithm

2. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

https://stackoverflow.com/a/22640362
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

Chapter 9

Machine Learning

9.1 Purpose
This is an introduction to pattern recognition/machine learning by creating
a word recognition system on Edge Impulse and deploying it on the Nano
RP2040 Connect. This lab also includes looking at the examples already
programmed into the IMU.

9.2 Laboratory
NOTE: There will be several points where you will be waiting significant
amounts of time for Edge Impulse to run calculations. During this time, run
the IMU examples in Section 9.3.

9.2.1 Creating and Installing Voice Recognition

1. Go to the Edge Impulse website

2. Click on Get Started

3. Look for and sign up for a “free community account”

4. It is going to try to start you on a tutorial. These directions assume
you quit the tutorial.

5. Find the blue “+ Create new project” button and press it

47

https://edgeimpulse.com/
https://edgeimpulse.com/

CHAPTER 9. MACHINE LEARNING 48

6. Enter a name for the project and press “Create new project”

7. Click on the Data acquisition tab on the left

8. Upload a folder containing individual word samples one at a time

(a) It can mess up if it tries to auto label the samples

(b) Label the samples according to what they represent (go, stop, left,
right, etc.)

(c) There is a zip file on Canvas named keywords.zip which contains
go, stop, left, right, etc., and unknown examples

(d) I would suggest picking only a couple of words and a noise/uknown
category rather than all the word categories.

(e) Follow the link in Resources to find a Google repository with more
words if you want something else

(f) Making your own recordings can work, but will be time consum-
ing since you need 5-10 min of examples for each word you want
recognized.

(g) Choose: Select folder, choose the folder, automatically split, Enter
label so it should look like Figure 9.1.

(h) Some of the files uploaded may not load. As long as most of the
files in the directory upload correctly you are fine.

(i) Once your data is uploaded, the page should look similar to Fig-
ure 9.2

9. Click on Impulse design

10. Leave it on Time series data, window of 1000 ms, window increase of
500 ms.

11. Change the Frequency to 20000 Hz and leave Zero-pad checked

12. Choose MFCC as the audio features

13. Click on Add Learning Block and select Classification

14. Classification should have a small number of Output features (4 in my
example for no, noise, unknown, yes)

CHAPTER 9. MACHINE LEARNING 49

Figure 9.1: This shows a ready to upload set of files.

Figure 9.2: Once the data is uploaded this figure shows what your project
should look like.

15. The impulse should look like what is shown in Figure 9.3

16. Click Save Impulse

17. Click on MFCC on the left hand menu

18. Click on Save parameters

CHAPTER 9. MACHINE LEARNING 50

Figure 9.3: The impulse setup should look similar to this. Note the frequency
is 20kHz.

19. Click on the Generate features tab

20. Then click on the Generate features button. This can take several
minutes.

21. Once that finishes (green complete in console), click on your model
(name under MFCC)

22. Change the number of training cycles to 50

23. Change the Learning rate to 0.005

24. Change the target (upper right) to Raspberry Pi RP2040 (Cortex-M0+
133MHz)

25. Click Start training. This can also take several minutes.

26. After training, the page should look like Figure 9.4

27. Once that completes, click on Deployment on the left

28. Search deployment options for Arduino library so that it looks like
Figure 9.5

29. Click Build

CHAPTER 9. MACHINE LEARNING 51

Figure 9.4: The fully trained model should result in something like this. Note
the Target.

30. After it finishes it should download a zip file and show some directions

31. Follow the directions to install the library and open the RP2040 Mi-
crophone example

32. It will take a significant amount of time to compile the example (5+
min)

33. Try running the example and see if the Serial output shows the word
you say as the most likely thing heard. Note that it only listens every
few seconds. Watch the serial port output for when it’s recording.

9.2.2 Adding Improvements

The library example as written does not output which class is the most likely
candidate.

CHAPTER 9. MACHINE LEARNING 52

Figure 9.5: This shows a model read to build as an Arduino library.

1. Improve the print_inference_result function to print out the
name of the most likely class and its probability.

2. There is a for loop that lists all the classes and their probabilities.

3. Modify this for loop to find the category with the maximum probability

4. Have the script play a different tone for each of the classes of interest
(yes, no in my example) when they are the most probable class. For
example have it play a 1000 Hz tone for left and 3000 Hz tone for right.

You should also be able to make it drive quite easily as a reaction to your
spoken word. Don’t use NeoPixels until you have already been signed off
for having it do something else first. To make the NeoPixels work, use the
NeoPixelConnect library. Initialize it to use PIO 1, state machine 0 like
this before your setup() function:

#define NEO_PIN 17

CHAPTER 9. MACHINE LEARNING 53

#define NEO_COUNT 17
NeoPixelConnect strip(NEO_PIN, NEO_COUNT, pio1, 0);

In your subsequent functions, the NeoPixels are controlled as shown:

// sets LED 6 to (R,G,B) of (100,0,0) and
// immediately displays it
strip.neoPixelSetValue(6,100,0,0,true);

I suspect the screen will not work, but have not tried it yet.

9.3 IMU Examples
While you are waiting for Edge Impulse to run, try out the capabilities of
the IMU on your board.

9.3.1 Download Examples

There is a zip file on Canvas named LSM6DSOX_Examples.zip. Download
and extract the zip file. Move the resulting folder into your sketch directory
(usually named arduino or Arduino inside your Documents folder). Now try
opening one of the examples from within the Arduino IDE. If you can find
it in your File → Sketchbook menu, you have put them in the right place.

9.3.2 Install Library

Install the STM32duino_LSM6DSOX library in the Arduino IDE since these
examples rely on it for the interface to the IMU.

9.3.3 Running Examples

Run each of the following examples noting that the outputs will all be via
the serial port:

CHAPTER 9. MACHINE LEARNING 54

9.3.3.1 6D Orientation

Open the example named LSM6DSOX_6DOrientation. Compile and upload
it to the board. When it runs, it should output a drawing indicating the
orientation as you rotate the board.

9.3.3.2 Free Fall Detection

Don’t drop or throw the board! Open the example named LSM6DSOX_FreeFallDetection.
Compile and upload it to your board. When it is running, raise and lower
the board while holding it and it should send an output when it thinks it is
in free fall.

9.3.3.3 Pedometer

Open the example named LSM6DSOX_Pedometer. Compile and upload it
to the board. Once it is running it should print out the number of steps
periodically. Shake the board up and down to imitate walking and it should
increment the counter.

9.3.3.4 Tap Detection

Open the example named LSM6DSOX_TapDetect. Compile and upload it
to the board. Once it is running try tapping the side of the board/module
(not front, back, or top). The serial should output single tap and double tap
as it thinks it is tapped.

9.3.3.5 Tilt Detection

Open the example named LSM6DSOX_TiltDetection. Compile and upload
it to the board. Once it is running try tilting the board after letting it sit
in one orientation for a bit. It should trigger a serial output when you move
the board.

9.3.3.6 Wake Up Detection

Open the example named LSM6DSOX_WakeUpDetection. Compile and
upload it to the board. Once it is running try moving the board after letting
it sit still for a bit. It should trigger a serial output when you move the
board.

CHAPTER 9. MACHINE LEARNING 55

9.3.3.7 Machine Learning Example

Open the example named LSM6DSOX_MLC. Compile and upload it to the
board. Once it is running try moving the board to simulate walking, running,
biking, driving, unknown, and staying stationary. Walking and jogging are
the easiest to get with vertical motion (Z-axis). Biking seems to be lateral
motion (X- or Y-axis). I have seen driving once but don’t remember how I
got it. I have never seen unknown.

9.4 Turn In
Turn in the following:

1. Have either the TA or the instructor sign-off on your lab

2. A PDF of your recognition sketch.

3. .ino version of your recognition sketch.

4. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

9.5 Resources
1. Voice recognition tutorial

2. Yes, no, unkown, noise dataset

3. Google keywords dataset

4. LSM6DSOX Library Header

5. LSM6DSOX Datasheet

6. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

https://pietropoluzzi.it/blog/ml/edge-impulse/voice-recognition/
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://blog.research.google/2017/08/launching-speech-commands-dataset.html
https://github.com/stm32duino/LSM6DSOX/blob/main/src/LSM6DSOXSensor.h
https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

Chapter 10

Controls

10.1 Purpose
The goal of this lab is to play with PID control to get a feel for how it works
on a real system.

10.2 Laboratory

10.2.1 Getting started

Example code is posted on Canvas as pid_dist_v0.5.ino. Download
and try running it. After pressing the right button it should try to maintain
a distance from an object in front of the robot. The NeoPixels will be red
when it is in PID mode, and green when it is in HALT mode. Turning the
potentiometer changes the target distance. In order to have the serial port
work at the same time as the motors run do the following:

1. Make sure both motor jumpers are set to BAT

2. Plug in the serial port

3. Turn on the battery switch.

Make sure this code works as expected.

56

CHAPTER 10. CONTROLS 57

10.2.2 Proportional Control

Set the gain for the integral (KI) and derivative (KD) terms to zero. Try dif-
ferent values for the proportional control. Can you turn proportional control
into bang-bang control? How well does it work?

10.2.3 Integral Control

Set the gain for proportional (KP) and derivative (KD) control to zero. Try
different values for integral control. How well does it run? Can you see
the windup? What happens for large values of KI? What happens for small
values of KI?

10.2.4 Derivative Control

Set the gain for proportional (KP) and integral (KI) control to zero. Try
different values for KD. What happens with large values? How about for
small values?

10.2.5 PID Calibration

Based on the tests you have done so far. Try to find gain values for the full
PID controller that work better than the defaults in the original file. How
can you tell if your gains are better than the original ones?

10.2.6 IMU PID Control

You have been supplied with a ruler to use as a ramp. Copy the PID file to
a new one with IMU in the title. Change it to try to level itself by backing
up the ramp. You will need to use your code for measuring angles from a
previous lab.

Some other changes that need to be made:

1. The distance PID controller is based on int values. The angle is a
float, so the PID function and values need to be updated accordingly.

2. The error also needs to be changed to a float.

CHAPTER 10. CONTROLS 58

3. Depending on the angle, the robot may not be able to get onto the
ramp so you may need to start it on the ramp. Tip the ramp up and
down to provide perturbances to the system.

4. The axes that the code measures around need to be changed to measure
the front-to-back angle rather than the side-to-side angle.

Be sure to turn off the battery switch prior to putting the robot away.
You do not need to turn in the distance PID sketch.

10.3 Turn In
Turn in the following:

1. Have either the TA or the instructor sign-off on your lab

2. A short writeup with the answers to the questions in the distance PID
section. One per group is fine.

3. A PDF of your ramp PID sketch.

4. .ino versions of your ramp PID sketch.

5. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

10.4 Resources
1. LSM6DSOX Library Header

2. LSM6DSOX Datasheet

3. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

https://github.com/stm32duino/LSM6DSOX/blob/main/src/LSM6DSOXSensor.h
https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

Chapter 11

Wireless

11.1 Purpose
The goal of this lab is to play with WiFi, Bluetooth, and time. Some of
the example sketches are in a .zip file on Canvas. Download the zip file and
unzip it into the Arduino directory (typically Documents/Arduino). You
should see directories with your other sketches inside the Arduino folder.

11.2 Laboratory

11.2.1 Preparation

Before you start this lab, be sure you have updated the following:

1. WiFiNINA module firmware (Tools → Firmware Updater)

2. The main libraries used for this lab

(a) WiFiNINA

(b) ArduinoBLE

(c) stm32duino’s ST25DV library

11.2.2 WiFi startup

Follow the WiFiNINA No Encryption example to connect your board to the
network. Be sure to change the SECRET_SSID to have EagleNet between

59

CHAPTER 11. WIRELESS 60

the double quotes in the arduino_secrets.h file.

11.2.3 NFC

The ST25DV library is the one in the Arduino Library Manager written
by stm32duino. The library may show as INCOMPATIBLE even though it
works fine. Make sure the example (NFC_Demo.ino) from Canvas works as
it is supposed to. It should cycle different things (website, call, text, etc.)
each time you press right the button. Put the top of your phone near the
coil that says NFC on the bottom left of the robot.

Change the example to show one of your email addresses and the IP
address of your Nano RP2040 Connect. This is done by copying over the
WiFi connection block from the WiFiNINA No Encryption example to your
setup() function.

In your setup() function, after WiFi has connected, convert the IPAd-
dress to a String with the following:
IPAddress ip = WiFi.localIP();
String ipString = String(ip[0]) + "." + ip[1] + "." + ip
[2] + "." + ip[3];
Now that you have the IP address as a String, you can update the element
of NFC_messages that has erau.edu to have the IP address String. Also
update NFC_protocols to use http NOT https. Note that you have to up-
date an element of the NFC_messages array and it has to be done AFTER
the WiFi has been setup. This cannot be done where the array is initialized
before the setup() function.

Demonstrate this to your instructor/TA.

11.2.4 UDP Between Boards

Working with another group, run the examples WiFiUdpSend and WiFiUdpReceiveSend
from the .zip file, one on each of 2 boards. Be sure to update remoteIp

in the WiFiUdpSend sketch to be the IP address of the other board. Once
running, the right button on the board should turn the LED on the other
board on and off.

Modify this to do something else (buzzer, NeoPixels, motor, etc.). Demo
for the instructor/TA.

CHAPTER 11. WIRELESS 61

11.2.5 Bluetooth Low Energy

Be sure to generate your own UUIDs for your particular project. If you use
the UUIDs from the examples, you will not be able to tell if you are connect-
ing to your board or someone else’s who is using the same UUIDs. Use the
UUID Generator to create random UUIDs. Use UUIDs in the form returned
by the website. If you create custom ones with a different format, the Blue-
tooth examples fail. Be sure to set the device (BLE.setDeviceName) and
local names (BLE.setLocalName) on all boards to something unique to
your group so that you can find it when scanning.

You will need a Bluetooth app for your phone. Some app names to look
for are BlueFruit Connect, LightBlue, and nRF Connect.

11.2.5.1 Phone to Robot Interface

Use the example code (BLE−ButtonLED) (being sure to change UUIDs,
device name, and local name) to turn an LED on and off on the robot from
your phone. Change the code to do something else (buzzer, NeoPixel, motor
(carefully), servo) when you change the value via the Bluetooth interface.
Also, show the button on the board changing the value read on your phone
using the Notify property. Demo this for your instructor/TA.

11.2.5.2 Inter-Robot Interface

For this part of the lab you will need to work with another group. Using the
example of a peripheral (BLE−ButtonLED.ino) and central (BLE−LED−
Central.ino) , use one robot to control something on the other robot.
Note that you need a different UUID for each of the peripheral, LED, and
Button characteristics but the UUIDs have the be the same between the two
sketches. Also, the LocalName needs to agree between the sketches. Demo
this working for your instructor/TA.

11.2.6 AJAX

There are 3 files on Canvas:

1. AJAX-Robot.ino

2. arduino_secrets.h

https://www.uuidgenerator.net/

CHAPTER 11. WIRELESS 62

3. index.h

Open the .ino file and then put the other files in the same directory. Make
sure to add them to the sketch (Sketch→Add File) so that they show up as
separate tabs. Upload the file to the robot. Once it has uploaded and the
LEDs are green, put your phone next to the NFC and go to the URL listed
(you must be on the EagleNet WiFi for it to load). Once you are on the
site you can control the builtin LED, the servo position, and the NeoPixel
color as well as read the distance measurement. Demo this working for your
instructor/TA.

11.3 Shutdown
Be sure to turn off the battery switch prior to putting the robot away.

11.4 Turn In
Turn in the following:

1. Have either the TA or the instructor sign-off on your lab

2. A PDF of your NFC sketch.

3. .ino versions of your NFC sketch.

4. Fill out the end of lab quiz prior to leaving. Note that it includes asking
you for the output of the getIDs sketch.

11.5 Resources
1. UUID Generator

2. PCB Schematic and Layout - see class manual in the Arduino Startup
→ Schematics and PCB section

This explains some of the code you are using.

https://www.uuidgenerator.net/
https://github.com/semcneil/Fundamentals-of-Microcontrollers-Manual

CHAPTER 11. WIRELESS 63

11.5.0.1 Peripheral Setup

1. Include Arduino’s BLE library
#include <ArduinoBLE.h>

2. Create a BLEService. This is container for characteristics. You can
have multiple services and characteristics per service.
BLEService ledService(String UUID);

3. Create a variable for each characteristic. Characteristics have proper-
ties. The most used properties are:

(a) BLERead - This allows a connected device to read the value of
this variable

(b) BLEWrite - This allows a connected device to change the value of
the variable

(c) BLENotify - This allows a connected device to be notified if the
value changes

BLEByteCharacteristic LEDCharacteristic(String UUID
, BLERead | BLEWrite);
BLEByteCharacteristic buttonCharacteristic(String UUID
, BLERead | BLENotify);

4. The next setup is done in the setup() function

5. Start the BLE module
BLE.begin()

6. Set the device name. This is the externally advertised name
BLE.setDeviceName("BUTTON_LED");

7. Set the local name. This can be checked by a device once connected
BLE.setLocalName("BUTTON_LED_MCNEILL");

8. Set the service as advertised
BLE.setAdvertisedService(ledService);

9. Add the characteristics to the service
ledService.addCharacteristic(LEDCharacteristic);

CHAPTER 11. WIRELESS 64

10. Add the service to the BLE object
BLE.addService(ledService);

11. Set initial values for each characteristic
LEDCharacteristic.writeValue(0);

12. Finish by starting your BLE advertising its existence
BLE.advertise();

13. In the loop() my preferred method is to create central device and
check to see if a device has connected. Once it has, update the values
of the output characteristics and check if the writeable characteristics
have been written to.

11.5.0.2 Central Setup

1. Scan for a device, typically by service UUID.
BLE.scanForUuid(BLE_UUID_PERIPHERAL);

2. Create a peripheral object
BLEDevice peripheral = BLE.available();

3. If the peripheral has been discovered, check its local name
if (peripheral.localName() != "BUTTON_LED")

4. Stop scanning
BLE.stopScan();

5. Connect to the peripheral
peripheral.connect()

6. Read the peripheral’s attributes
peripheral.discoverAttributes()

7. Retrieve each characteristic and check to make sure each has the at-
tributes (Read/Write/Notify) expected

if (!buttonCharacteristic) {
Serial.println("Peripheral does not have

button characteristic!");
peripheral.disconnect();
return;

CHAPTER 11. WIRELESS 65

} else if (!buttonCharacteristic.canRead()) {
Serial.println("Peripheral does not have a

readable button characteristic!");
peripheral.disconnect();
return;

} else if (!buttonCharacteristic.canSubscribe()) {
Serial.println("Peripheral does not allow

button subscriptions (notify)");
} else if(!buttonCharacteristic.subscribe()) {

Serial.println("Subscription failed!");
} else {

Serial.println("Connected to button
characteristic");

}

8. Read/write the peripheral’s characteristics as desired

if(buttonCharacteristic && buttonCharacteristic.
canRead() && buttonCharacteristic.valueUpdated
()) {
byte peripheralButtonState;
buttonCharacteristic.readValue(

peripheralButtonState);
if(!peripheralButtonState) {

digitalWrite(ledPin, HIGH);
} else {

digitalWrite(ledPin, LOW);
}

}

	Introduction
	License

	Arduino Startup
	Installing the IDE
	Lab Computer
	Personal Computer

	Testing the Setup
	Installing the Board Drivers

	USB Demos
	USB Keyboard
	USB Mouse

	Other examples
	Finishing Up
	Turn In

	Multiplexer, LED Display, Binary, HEX
	Purpose
	Resources
	Procedure
	Add the PCA95x5 library
	Turn on some LEDs
	Count
	Extra credit: 2 pts
	Extra Credit Hints

	Turn In

	Buttons and Serial (UART)
	Purpose
	Serial Library
	Buttons
	Making Noise (buzzer)
	NeoPixels

	Resources
	Procedure
	Debugging
	Turn In

	Displays
	Purpose
	Procedure
	Main Requirements
	Extra Credit

	Turn In
	Resources

	Environmental Sensing
	Purpose
	Procedure
	Overview
	Suggestions
	ADS7142 - TEMP0, POT, LIGHT1, LIGHT2
	SHT31 Temperature and Humidity Sensor
	QMC5883L Compass
	LSM6DSOX IMU
	(Extra Credit) 1-Wire Sensors

	Main Requirements
	Turn In
	Resources

	IMU
	Purpose
	IMU Angle Measurement

	Main Requirements
	IMU Screen Control
	Plotting IMU Data

	Procedure
	Extra Credit: 2 pts
	Turn In
	Resources

	Distance, Motor, Servo
	Purpose
	Main Requirements
	Distance Calibration
	DC Motors
	Servo

	Turn In
	Resources

	Peak Detection
	Purpose
	Procedure
	Possible Sensors
	Example Reactions

	Turn In
	Resources

	Machine Learning
	Purpose
	Laboratory
	Creating and Installing Voice Recognition
	Adding Improvements

	IMU Examples
	Download Examples
	Install Library
	Running Examples

	Turn In
	Resources

	Controls
	Purpose
	Laboratory
	Getting started
	Proportional Control
	Integral Control
	Derivative Control
	PID Calibration
	IMU PID Control

	Turn In
	Resources

	Wireless
	Purpose
	Laboratory
	Preparation
	WiFi startup
	NFC
	UDP Between Boards
	Bluetooth Low Energy
	AJAX

	Shutdown
	Turn In
	Resources

